OPERATORS ASSOCIATED WITH A PAIR OF NONNEGATIVE MATRICES
GERALD E. SUCHAN

ABSTRACT. Let $A_{m \times n}$, $B_{m \times n}$, $X_{n \times 1}$, and $Y_{m \times 1}$ be matrices whose entries are nonnegative real numbers and suppose that no row of A and no column of B consists entirely of zeroes. Define the operators U, T and T' by $(UX)_i = X_i^{-1}$ [or $(UY)_i = Y_i^{-1}$], $T = UB'UA$ and $T' = UAUB'$. T is called irreducible if for no nonempty proper subset S of $\{1, \ldots, n\}$ it is true that $X_i = 0, i \in S$; $X_i \neq 0, i \notin S$, implies $(TX)_i = 0, i \in S$; $(TX)_i \neq 0, i \notin S$. M. V. Menon proved the following Theorem. If T is irreducible, there exist row-stochastic matrices A_1 and A_2, a positive number θ, and two diagonal matrices D and E with positive main diagonal entries such that $DAE = A_1$ and $\theta DBE = A_2$. Since an analogous theorem holds for T', it is natural to ask if it is possible that T' be irreducible if T is not. It is the intent of this paper to show that T' is irreducible if and only if T is irreducible.

Suppose that each of m and n is a positive integer. Let $A_{m \times n}$ and $B_{m \times n}$ be matrices whose entries are nonnegative real numbers and suppose that no row of A and no column of B consists entirely of zeroes. Let $X_{n \times 1}$ and $Y_{m \times 1}$ be matrices whose entries are taken from the extended real nonnegative numbers. Define the operator U by $(UX)_i = X_i^{-1}$ [or $(UY)_i = Y_i^{-1}$] and let $0^{-1} = \infty, \infty^{-1} = 0$, $\infty + \infty = \infty, 0 \cdot \infty = 0$, and if $a > 0, a \cdot \infty = \infty$ [1]. Define the operators T and T' by $T = UB'UA$ and $T' = UAUB'$ where B' is the transpose of B. Clearly

$$(TX)_i = \left(\sum_{j=1}^{m} b_{ij} \left(\sum_{k=1}^{n} a_{jk} X_k\right)^{-1}\right)^{-1}.$$

T is called irreducible if for no nonempty proper subset S of $N = \{1, \ldots, n\}$ is it true that $X_i = 0, i \in S$; $X_i \neq 0, i \notin S$, implies $(TX)_i = 0, i \in S$; $(TX)_i \neq 0, i \notin S$. T' is defined to be irreducible analogously.

M. V. Menon [2] proved the following.

Theorem 1. If T is irreducible, then there exist row-stochastic matrices A_1 and A_2, a positive number θ, and two diagonal matrices D and E with positive main diagonal entries such that $DAE = A_1$ and $\theta DBE = A_2$.

Received by the editors March 5, 1971.

Key words and phrases. Nonnegative matrix, stochastic, irreducible.
Since an analogous theorem holds for T', one would hope that T' might be irreducible even if T is not. However, it is the intent of this paper to prove the following result.

Theorem 2. T' is irreducible if and only if T is irreducible.

Proof. If T' is not irreducible then there is a nonempty proper subset S of $M = \{1, \ldots, m\}$ which has the property that if $Y_{m \times 1}$ is such that $Y_i = 0$, $i \in S$, $Y_i \neq 0$, $i \notin S$, then $(T' Y)_i = 0$, $i \in S$, $(T' Y)_i \neq 0$, $i \notin S$. Let $Z_{n \times 1} = UB'Y$, put $E = \{i \in N: Z_i = \infty\}$, and let E' be the complement of E in N.

1. If $i_0 \in S$ then there exists $j_0 \in N$ such that $a_{i_0 j_0} (\sum_{k=1}^{m} b_{k j_0} Y_k)^{-1} = \infty$. Hence $Z_{j_0} = \infty$ and thus E is not null.

2. Let S' be the complement of S in M so that if $i_0 \in S'$, then there exists $j_0 \in N$ such that $\infty > a_{i_0 j_0} (\sum_{k=1}^{m} b_{k j_0} Y_k)^{-1} > 0$. Hence $\infty > Z_{j_0} > 0$ and E' is not null.

3. Let $X_{n \times 1}$ be defined by putting $\infty > X_i > 0$ if $i \in E$ and $X_i = 0$ if $i \in E'$. If $X_{i_0} = 0$ then $\infty > (\sum_{j=1}^{m} b_{i_0 j} (\sum_{k=1}^{m} a_{j k} Z_k)^{-1}) > 0$ and hence there exists $j_0 \in M$ such that $\infty > b_{i_0 j_0} > 0$. Thus $\infty > \sum_{k=1}^{m} a_{i_0 j_0} Z_k = \sum_{k \in E'} a_{i_0 j_0} Z_k + \sum_{k \in E} a_{i_0 j_0} Z_k > 0$ so that $a_{i_0 j_0} = 0$ for $k \in E$. Therefore, if $X_{i_0} = 0$, then $(TX)_{i_0} = 0$.

4. For $i_0 \in E$, put $F = \{j \in M: b_{i_0 j} = 0\}$ and let F' be the complement of F in M. Since $\infty > X_{i_0} > 0$ then $(TZ)_{i_0} = \infty$ so that

$$\sum_{j=1}^{m} b_{j i_0} \left(\sum_{k=1}^{n} a_{j k} Z_k \right)^{-1} = \sum_{j \in F'} b_{j i_0} \left(\sum_{k=1}^{n} a_{j k} Z_k \right)^{-1} + \sum_{j \in F} b_{j i_0} \left(\sum_{k=1}^{n} a_{j k} Z_k \right)^{-1} = 0,$$

and hence there exists $j_0 \in F'$ so that $b_{j_0 i_0} \neq 0$. Thus $\sum_{k=1}^{n} a_{i_0 k} Z_k = \infty$ so that there exists $k_0 \in E$ such that $\infty > a_{i_0 k_0} X_{k_0} > 0$. Therefore if $\infty > X_{i_0} > 0$ then $\infty > (TX)_{i_0} > 0$.

It immediately follows from (1), (2), (3), and (4) that T' is irreducible if T is irreducible. A similar argument proves that T is irreducible if T' is irreducible.

References

Department of Mathematics, University of Houston, Houston, Texas 77004