PERTURBED ASYMPTOTICALLY STABLE SETS

ROGER C. McCANN

Abstract. Perturbations of a dynamical system are defined and the behavior of compact asymptotically stable sets under these perturbations is determined. The occurrence of critical points in a perturbed planar dynamical system is also investigated.

In [1] it is shown that if C is an asymptotically stable cycle of a planar dynamical system π and if π_t is a net of planar dynamical systems which converges to π, then there are limit cycles C_t of π_t such that $C_t \rightarrow C$. This paper presents a similar result in a more general setting for perturbed asymptotically stable sets. If π_t is a net of dynamical systems which converges to a dynamical system π and if M is a compact asymptotically stable set of π, then eventually there are asymptotically stable sets M_t of π_t arbitrarily close to M. Moreover, if M is invariant with respect to all π_t, then $M_t \rightarrow M$.

R, R^+, and R^- will denote the reals, nonnegative reals, and nonpositive reals respectively.

A dynamical system π on a topological space X is a mapping of $X \times R$ onto X which satisfies the following three conditions (where $x \pi t = \pi(x, t)$):

(i) π is continuous in the product topology.
(ii) $x \pi 0 = x$ for each $x \in X$.
(iii) $(x \pi t) \pi s = x \pi (t+s)$ for each $x \in X$ and $s, t \in R$.

If $A \subset X$ and $B \subset R$, then $A \pi B$ will denote the set $\{x \pi t : x \in A, t \in B\}$. $L^+(x)$ and $L^-(x)$ will denote the positive limit set of x and the negative limit set of x respectively. A subset M of X is called an (negative) attractor iff there is a neighborhood U of M such that $(L^-(x)) \cup U = M$ for every $x \in U$. If M is an (negative) attractor, then $(A^+(M)) \cup A^-(M)$ will denote the largest such neighborhood.

A subset S of X is called a section with respect to π iff $(S \pi t) \cap S = \emptyset$ for all $t \neq 0$.

In a topological space X it is possible to define limits of nets of subsets.

Received by the editors April 12, 1971 and, in revised form, January 7, 1972.

AMS 1970 subject classifications. Primary 34C35, 34D10; Secondary 34C05.

Key words and phrases. Dynamical systems, perturbation asymptotic stability, stable critical point.
Let \(\pi \) be a dynamical system on \(X \) and \(\pi_i \) be a net of dynamical systems on \(X \) such that \(\pi_i \rightarrow \pi \) in the following sense: if \(x_i \) and \(t_i \) are nets converging to \(x \) and \(t \) respectively, then \(x_i \pi_i t_i \rightarrow x \pi t \) [2, VI, 3.1-3.11]. If \(X \) is locally compact, then the convergence of \(\pi_i \) to \(\pi \) as defined above is equivalent to the convergence of \(\pi_i \) to \(\pi \) in the compact open topology [2, VI, 3.3]. A section with respect to \(\pi \) may not be a section with respect to any of the \(\pi_i \) [2, VI, 3.10.1].

Convention. Any set subscripted by an \(i \) is to be considered relative to \(\pi_i \); e.g., \(L_\pi^+(x) \) is the positive limit set of \(x \) with respect to \(\pi_i \).

The purpose of this paper is to prove the following theorem.

Theorem 1. Let \(X \) be a locally compact metric space on which there is defined a dynamical system \(\pi \) and a net \(\pi_i \) of dynamical systems such that \(\pi_i \rightarrow \pi \). If \(M \) is a compact asymptotically stable set of \(\pi \), then there are asymptotically stable sets \(M_i \) of \(\pi_i \) such that \(\limsup M_i \subseteq M \). Moreover, if \(M \) is invariant with respect to each \(\pi_i \), then \(\lim M_i = M \).

Since \(M \) is asymptotically stable there is a continuous Liapunov function \(v: A^+(M) \rightarrow \mathbb{R}_+ \) for \(M \) such that (i) \(v(x \pi t) < v(x) \) whenever \(x \notin M \) and \(t > 0 \) and (ii) \(v(x) = 0 \) whenever \(x \in M \) [3, Theorem 10]. \(\mathcal{F} \) will denote the family \(\{v^{-1}([0, r]): r > 0\} \), which is a fundamental system of neighborhoods of \(M \). It is easily verified that \(v^{-1}(r), r > 0 \), is a section with respect to \(\pi \).

The proof of the theorem depends on the following two lemmas.

Lemma 2. Let \(U, V \in \mathcal{F} \) be such that both are compact and \(V \subseteq \text{int} U \). Then eventually \((\text{cl}(X-U)) \pi_i, R^- \subseteq X-V \).

Proof. Set \(A = X-U \) and \(B = X-V \). Evidently both are open and \(A \subseteq B \). Let \(\alpha < 0 \). By the construction of \(U \), we have \(\partial A \pi \alpha \subseteq A \) and \(A \pi_i [2 \alpha, 0] \subseteq A \subseteq B \). Since \(\pi_i \rightarrow \pi \), eventually, say \(i > i_0 \), \(\partial A \pi_i, \alpha \subseteq A \) and \(A \pi_i [2 \alpha, 0] \subseteq B \). We now show that \(A \pi_i, R^- \subseteq B \) for \(i > i_0 \). Assume not. Then there is an \(x \in \partial A \) and \(t \in \mathbb{R}^- \) such that \(x \pi_i t \in \partial B \). Set \(s = \inf \{ \tau: x \pi_i \tau \in \partial A, t < s \leq 0 \} \). Then \(t < s \) and \(x \pi_i s \in \partial A \) since \(\partial A \) is compact. Moreover, \(x \pi_i (s, t) \cap A = \emptyset \). Since \(x \pi_i s \in \partial A \) and \(x \pi_i t \in \partial B \), we have that \(t-s < 2 \alpha \) (recall \(A \pi_i [2 \alpha, 0] \subseteq B \) for \(i > i_0 \)). But \(\partial A \pi_i, \alpha \subseteq \text{int} A \). This contradicts \(\emptyset = x \pi_i (s, t) \cap A = ((x \pi_i s) \pi(t-s, 0)) \cap A \). This contradiction implies \(A \pi_i, R^- \subseteq B \) for \(i > i_0 \).
Lemma 3. Let $U \in \mathcal{F}$ be compact. Then $\text{cl}(X - U)$ is eventually a negative attractor with respect to π_i.

Proof. Let V, $W \in \mathcal{F}$ be compact and such that $V \subseteq \text{int} U \subseteq U \subseteq \text{int} W$ and set $A = X - W$, $B = X - U$, $C = X - V$. Each is open and $\bar{A} \subseteq B \subseteq \bar{B} \subseteq C$. Since W and V are in \mathcal{F}, for each $x \in \text{cl}(C - A)$ there is a $t(x) \in \mathbb{R}^+$ such that $x \pi t(x) \subseteq A$. We will first show that there is a $T \in \mathbb{R}^+$ such that $x \pi t(x) \cap A \neq \emptyset$ for each $x \in \text{cl}(C - A)$. Assume there is no such T. Then there are nets $x_t \in \text{cl}(C - A)$ and $s(x_t) \in [T, 0]$ such that $x_t \in [s(x_t), 0] \cap A = \emptyset$. Since $\text{cl}(C - A)$ is compact, we may assume that $x_t \to x \in \text{cl}(C - A)$ and, since A is open and π continuous, $x \pi t(x) \subseteq A$ eventually. This contradiction implies the existence of a $T \in \mathbb{R}^+$ such that $x \pi t(x) \cap A \neq \emptyset$ for each $x \in \text{cl}(C - A)$. Since $\text{cl}(C - A)$ is compact and $\pi^t \pi$, eventually, say $i > i_0$, $x \pi t(x) \cap A \neq \emptyset$ for each $x \in \text{cl}(C - A)$. C is a neighborhood of β. $\pi \pi - \beta$ eventually (Lemma 2) so that $L_i(C) \subseteq B$. If $x \in \text{cl}(C - A)$, then for $i > i_0$, $x \pi t(x) \cap A \neq \emptyset$ and (by Lemma 2) $L_i(C) \subseteq B$ eventually. Thus eventually $L_i(C) \subseteq B$ and B is eventually a negative weak attractor with respect to π_i.

Proof of Theorem 1. Let the notation be as in Lemma 3. B is a negative attractor and $A_i^{-1}(B) = B \subseteq U$. Therefore $\partial A_i^{-1}(B) \subseteq U$ and $\partial A_i^{-1}(B)$ is compact. Hence $X - A_i^{-1}(B)$ is asymptotically stable with respect to π_i [4, Theorem 3.10]. Thus we have shown that, for each r, $M(r) = X - v^{-1}([0, r])$ is eventually a negative attractor, $X - A_i^{-1}(M(r))$ is asymptotically stable and $X - A_i^{-1}(M(r)) \subseteq v^{-1}([0, r])$. Set $r_i = \inf\{r: M(r)$ is a negative attractor with respect to $\pi_i\}$ and $0 \leq \epsilon_i \leq r_i$ be such that $M(r_i + \epsilon_i)$ is a negative attractor with respect to π_i. Finally set $M_i = X - A_i^{-1}(M(r_i + \epsilon_i))$. $M_i \subseteq v^{-1}([0, r_i + \epsilon_i])$ and is asymptotically stable. Lemma 3 implies $r_i \to 0$. Hence $M_i \subseteq v^{-1}([0, r_i + \epsilon_i]) \to v^{-1}(0) = M$, so that $\text{lim sup} M_i \subseteq M$. If M is invariant with respect to each π_i, then $L_i^+(M) \subseteq M$ so that $M \subseteq X - A_i^{-1}(M(r_i + \epsilon_i)) = M_i$. It easily follows that $M_i \to M$. This completes the proof.

Remark. It should be noted that the converse of Theorem 1 is false. That is, if M_i are compact asymptotically stable sets of π_i and if M_i converges to a compact set M, then it does not necessarily follow that M is asymptotically stable with respect to π. Let π be a planar dynamical system with the origin as a center-focus and C_n ($n = 1, 2, \cdots$) a sequence of external limit cycles which converge to the origin. $\text{cl}(\text{int} C_n)$ is asymptotically stable and $\lim \text{cl}(\text{int} C_n)$ is the origin. Finally for each positive integer n, set $\pi_n = \pi$. $\text{cl}(\text{int} C_n)$ is asymptotically stable with respect to π_n, but the origin is not asymptotically stable with respect to π.

We now assume that X is the plane \mathbb{R}^2 and investigate the occurrence of critical points in the π_i. We will prove the following theorem.
Theorem 4. Let x be a stable isolated critical point of a planar dynamical system π. Then there are critical points x_i of π_i such that $x_i \to x$.

The proof depends on the following three lemmas.

Lemma 5. Each stable isolated critical point possesses arbitrarily small neighborhoods bounded by either a cycle or a section with respect to π which is a simple closed curve.

Proof. The proof follows immediately from [2, VIII, 4.1] and [2, VIII, 4.3].

Lemma 6. Let $x \in X$ possess a fundamental system \mathcal{F} of neighborhoods whose boundaries are simple closed curves which are sections with respect to π. If W is any neighborhood of x, then there is a neighborhood $V \subset W$ of x such that eventually $L^+_\sigma(V) \subset W$ or $L^-_{\sigma'}(V) \subset W$.

Proof. Let $U \subset \mathcal{F}$. For $\epsilon > 0$, $\bar{\partial} \pi(\epsilon, +\infty) \subset \text{int } U$ or $\bar{\partial} \pi(-\infty, -\epsilon) \subset U$ [2, VII, 4.8]. Hence \mathcal{F} contains a fundamental system \mathcal{G} of compact neighborhoods of x which consists entirely of positively invariant sets or of negatively invariant sets. For definiteness we will assume \mathcal{G} consists of positively invariant sets. Let $V, U \in \mathcal{G}$ be such that $V \subset \text{int } U \subset \bar{\partial} \pi \subset \text{int } W$. In a manner similar to that used in the proof of Lemma 2, it can be shown that eventually $V \cap R^+ \subset U$. Thus $L^+(V) \subset \bar{\partial} \pi \subset \text{int } W$. If \mathcal{G} consists of negatively invariant sets, the proof is analogous.

Lemma 7. Let $x \in X$ possess a fundamental system \mathcal{F} of neighborhoods whose boundaries are cycles of π. If W is any simply connected neighborhood of x, then there are sets $V_i \subset W$ such that eventually either $L^+_\sigma(V_i) \subset W$ or $L^-_{\sigma'}(V_i) \subset W$.

Proof. Let $U \subset \mathcal{F}$ be such that $\bar{\partial} \pi \subset \text{int } W$. Since $\bar{\partial} U$ contains no critical points with respect to π, eventually $\bar{\partial} U$ contains no critical points with respect to π_i [2, VI, 3.7]. Let $x_0 \in \bar{\partial} U$, T be the fundamental period of x_0 with respect to π, and S_i be transversals (local sections which are arcs) with respect to π_i, and which generate neighborhoods of x ([2, VI, 2.12] and [2, VII, 1.6]). Let $0 < T < \frac{1}{2} T$. Eventually $x_0 \pi_i(0, \frac{1}{2} T) \cap S_i = \emptyset$, $x_0 \pi_i(\frac{1}{2} T, \frac{3}{2} T) \cap S_i = \emptyset$, and $x \pi_i(0, \frac{3}{2} T) \subset \text{int } W$. Set $t_i = \inf \{ \tau : x \pi \pi \in S_i, \tau > \frac{1}{2} T \}$. Let C_i be the simple closed curve composed of $x \pi_i(0, t_i]$ and the subarc of S_i connecting x and $x \pi_i(t_i)$. Clearly this can eventually be done. Finally set $V_i = \text{int } C_i$. Then $\bar{V}_i \subset W$ since W is simply connected. V_i is either positively invariant or negatively invariant [2, VII, 4.8]. Hence $L^+_\sigma(V_i) \subset \bar{V}_i \subset W$ or $L^-_{\sigma'}(V_i) \subset \bar{V}_i \subset W$. This completes the proof.

Proof of Theorem 4. Let x be a stable isolated critical point and W be a compact simply connected neighborhood of x. By Lemmas 5, 6 and 7 there is a net y_i in W such that eventually either $L^+_\sigma(y_i) \subset W$ or $L^-_{\sigma'}(y_i) \subset W$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
By the Poincaré-Bendixson Theorem [2, VIII, 1.14], if $L_t^+(y_i)\subset W$, then $L_t^+(y_i)$ is a cycle of π_i or $L_t^+(y_i)$ contains critical points of π_i. A similar result holds if $L_t^-(y_i)\subset W$. If $L_t^+(y_i)$ (or $L_t^-(y_i)$) is a cycle then int $L_t^+(y_i)\subset W$ and int $L_t^+(y_i)$ contains a critical point [2, VII, 4.8]. Thus eventually W contains critical points of π_i. Let x_i be a critical point of π_i and assume $x_i\to x_0$. Then, for any $t \in \mathbb{R}$,

$$x_0 \leftarrow x_i = x_i^\pi t \to x_0^\pi t.$$

Hence x_0 is a critical point of π. Since x is an isolated critical point of π, the desired result easily follows.

Remarks. (1) If x is a stable critical point of π and x_i are critical points of π_i such that $x_i\to x$, it may be that none of the x_i are stable. Let π_n ($n=1, 2, \cdots$) be the planar dynamical system indicated by the following drawing (where the cycle is a circle of radius $1/n$). Then the π_n can be chosen so that they converge to a dynamical system π_n in which the origin is asymptotically stable.

(2) If x is a critical point of π, it is possible that there are no critical points of the π_i close to x. Let π_n ($n=1, 2, \cdots$) be the planar dynamical system given by $\dot{x}=x^2/(1+x^2)+1/n$, $y=0$ and π be the planar system given by $\dot{x}=x^2/(1+x^2)$, $\dot{y}=0$. Then $\pi_n\to \pi$, each π_n is free from critical points, and π has a critical point at the origin.

References