SIMPLY-CONNECTED BRANCHED COVERINGS OF S^3

C. MCA. GORDON1 AND W. HEIL2

Abstract. It is shown that a simply connected covering of S^3 branched over a torus knot or one of a certain class of links is S^3.

A possible approach to the 3-dimensional Poincaré conjecture is outlined by Fox in [5]: Construct a compact simply-connected covering of S^3 branched over a tame link, and then try to decide whether or not it is in fact S^3. It is the purpose of the present note to point out that if the complement of the link in question is a Seifert fibre space, then this construction will never yield a counterexample to the Poincaré conjecture. In particular, the simply-connected branched covering over the trefoil described in detail in [4] and [5] is indeed S^3. (This last fact also follows from a theorem of Burde [1].)

Lemma. Let M be a Seifert fibre space (with or without boundary), and suppose that $K_1, \cdots, K_n \subseteq \text{int } M$ are fibres (ordinary or exceptional). Then if \bar{M} is any compact covering of M branched over $K_1 \cup \cdots \cup K_n$, \bar{M} is also a Seifert fibre space.

Proof. Removing the interior of a tubular neighbourhood T_i of each K_i gives a Seifert fibre space N. If \bar{N} is that part of \bar{M} which lies over N, then \bar{N} is a Seifert fibre space, and the covering projection $p: \bar{N} \to N$ takes fibres to fibres [6, p. 195]. The branched covering \bar{M} is then obtained by attaching solid tori $\hat{T}_{i,j}$, $j=1, \cdots, k_i$, $i=1, \cdots, n$, to \bar{N}, in such a way that a meridian on $\partial \hat{T}_{i,j} \subseteq \partial \bar{N}$ projects, under p, to a meridian on $\partial T_i \subseteq \partial N$ [6, pp. 231–233]. Since the fibering of N extends to a fibering of M, the fibres on ∂T_i are not meridians. Therefore the fibres on $\partial \hat{T}_{i,j}$ are not meridians, and the fibering of \bar{N} can be extended to a fibering of \bar{M}.

Theorem. If \bar{M} is a compact simply-connected covering of S^3 branched over any link whose complement is a Seifert fibre space, then $\bar{M} \cong S^3$.

Remark. A complete description of such links is given in [2]. In particular, the knots with this property are precisely the torus knots (see also [3]).

Received by the editors November 17, 1971.

Key words and phrases. Seifert fibre space, branched covering, Poincaré conjecture.

1 Partially supported by NSF grant GP-19964.
Proof of Theorem. If the fibring of the complement of the link extends to a fibring of \(S^3 \) in which the components of the link are fibres, then \(\tilde{M} \) is a Seifert fibre space. Since it is simply-connected, it is therefore \(S^3 \) [6, p. 206].

If the fibring of the complement does not so extend, it can at least be extended to all components of the link except one, say \(K \) [2]. If \(T \) is a tubular neighbourhood of \(K \), and \(Q \) the complement of the interior of \(T \), then \(Q \) is a Seifert fibre space such that the fibres on \(\partial T = \partial Q \) are meridians. Then \(\tilde{M} = (\tilde{T}_1 \cup \cdots \cup \tilde{T}_k) \cup \tilde{Q} \), where \(\tilde{T}_1, \cdots, \tilde{T}_k \) are solid tori, and \(\tilde{Q} \) is a Seifert fibre space such that the fibres on \(\partial \tilde{T}_j \subset \partial \tilde{Q} \), \(j = 1, \cdots, k \), are meridians. Now \(\pi_1(\tilde{M}) \cong \pi_1(\tilde{Q})/\langle h \rangle \), where \(h \) is the element represented by an ordinary fibre of \(\tilde{Q} \), and by hypothesis this is the trivial group. The argument in [2, p. 90] then shows that in fact \(k = 1 \), the Zerlegungsfläche is a disc, and there are no exceptional fibres. Hence \(\tilde{Q} \cong D^2 \times S^1 \), and \(\tilde{M} \cong (S^1 \times D^3) \cup (D^2 \times S^1) \), identified along \(S^1 \times S^1 \) by the identity, which is just \(S^3 \).

References

Department of Mathematics, Florida State University, Tallahassee, Florida 32306