SIMPLY-CONNECTED BRANCHED COVERINGS OF \(S^3 \)

C. McA. GORDON\(^1\) AND W. HEIL\(^2\)

Abstract. It is shown that a simply connected covering of \(S^3 \) branched over a torus knot or one of a certain class of links is \(S^3 \).

A possible approach to the 3-dimensional Poincaré conjecture is outlined by Fox in [5]: Construct a compact simply-connected covering of \(S^3 \) branched over a tame link, and then try to decide whether or not it is in fact \(S^3 \). It is the purpose of the present note to point out that if the complement of the link in question is a Seifert fibre space, then this construction will never yield a counterexample to the Poincaré conjecture. In particular, the simply-connected branched covering over the trefoil described in detail in [4] and [5] is indeed \(S^3 \). (This last fact also follows from a theorem of Burde [1].)

Lemma. Let \(M \) be a Seifert fibre space (with or without boundary), and suppose that \(K_1, \ldots, K_n \subset \text{int } M \) are fibres (ordinary or exceptional). Then if \(\tilde{M} \) is any compact covering of \(M \) branched over \(K_1 \cup \cdots \cup K_n \), \(\tilde{M} \) is also a Seifert fibre space.

Proof. Removing the interior of a tubular neighbourhood \(T_i \) of each \(K_i \), gives a Seifert fibre space \(\tilde{N} \). If \(N \) is that part of \(\tilde{M} \) which lies over \(N \), then \(\tilde{N} \) is a Seifert fibre space, and the covering projection \(p: \tilde{N} \rightarrow N \) takes fibres to fibres [6, p. 195]. The branched covering \(\tilde{M} \) is then obtained by attaching solid tori \(\tilde{T}_{i,j} \), \(j = 1, \ldots, k_i \), \(i = 1, \ldots, n \), to \(\tilde{N} \), in such a way that a meridian on \(\partial \tilde{T}_{i,j} \subset \partial \tilde{N} \) projects, under \(p \), to a meridian on \(\partial T_{i,j} \subset \partial N \) [6, pp. 231–233]. Since the fibering of \(N \) extends to a fibering of \(M \), the fibres on \(\partial T_i \) are not meridians. Therefore the fibres on \(\partial \tilde{T}_{i,j} \) are not meridians, and the fibering of \(\tilde{N} \) can be extended to a fibering of \(\tilde{M} \).

Theorem. If \(\tilde{M} \) is a compact simply-connected covering of \(S^3 \) branched over any link whose complement is a Seifert fibre space, then \(\tilde{M} \cong S^3 \).

Remark. A complete description of such links is given in [2]. In particular, the knots with this property are precisely the torus knots (see also [3]).

Received by the editors November 17, 1971.

Key words and phrases. Seifert fibre space, branched covering, Poincaré conjecture.

\(^1\)\(^2\) Partially supported by NSF grant GP-19964.

\(\text{\copyright American Mathematical Society 1972} \)

287
PROOF OF THEOREM. If the fibering of the complement of the link extends to a fibering of S^3 in which the components of the link are fibres, then \tilde{M} is a Seifert fibre space. Since it is simply-connected, it is therefore S^3 [6, p. 206].

If the fibering of the complement does not so extend, it can at least be extended to all components of the link except one, say K [2]. If T is a tubular neighbourhood of K, and Q the complement of the interior of T, then Q is a Seifert fibre space such that the fibres on $\partial T = \partial Q$ are meridians. Then $M = (\tilde{T}_1 \cup \cdots \cup \tilde{T}_k) \cup \tilde{Q}$, where $\tilde{T}_1, \cdots, \tilde{T}_k$ are solid tori, and \tilde{Q} is a Seifert fibre space such that the fibres on $\partial \tilde{T}_j = \partial \tilde{Q}$, $j = 1, \cdots, k$, are meridians. Now $\pi_1(M) \cong \pi_1(\tilde{Q})/\langle h \rangle$, where h is the element represented by an ordinary fibre of \tilde{Q}, and by hypothesis this is the trivial group. The argument in [2, p. 90] then shows that in fact $k = 1$, the Zerlegungsfläche is a disc, and there are no exceptional fibres. Hence $\tilde{Q} \cong D^2 \times S^1$, and $M \cong (S^1 \times D^2) \cup (D^2 \times S^1)$, identified along $S^1 \times S^1$ by the identity, which is just S^3.

REFERENCES

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306