Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Error bounds for Galerkin's method for monotone operator equations

Author: Martin H. Schultz
Journal: Proc. Amer. Math. Soc. 35 (1972), 227-229
MSC: Primary 65J05
MathSciNet review: 0297123
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An abstract theorem, generalizing a result of Nitsche, is proved. This gives sharp error bounds for the Galerkin method for approximating the solutions of a large class of non-linear operator equations in Hilbert spaces.

References [Enhancements On Off] (What's this?)

  • [1] Felix E. Browder, Approximation-solvability of nonlinear functional equations in normed linear spaces, Arch. Rational Mech. Anal. 26 (1967), 33–42. MR 0220119
  • [2] P. G. Ciarlet, M. H. Schultz, and R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems. V. Monotone operator theory, Numer. Math. 13 (1969), 51–77. MR 0250496
  • [3] J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 0233502
  • [4] J. Nitsche, Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen, Numer. Math. 13 (1969), 260–265 (German). MR 0278532
  • [5] J. Nitsche, Konvergenz des Ritz-Galerkinschen Verfahrens bei nichtlinearen Operatorgleichungen, Iterationsverfahren, Numerische Mathematik, Approximationstheorie (Tagung Nichtlineare Aufgaben Numer. Math., Oberwolfach, 1968) Birkhäuser, Basel, 1970, pp. 75–81. Internat. Schriftenreihe Numer. Math., Vol. 15 (German). MR 0378406
  • [6] Martin H. Schultz, 𝐿² error bounds for the Rayleigh-Ritz-Galerkin method, SIAM J. Numer. Anal. 8 (1971), 737–748. MR 0298918

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 65J05

Retrieve articles in all journals with MSC: 65J05

Additional Information

Keywords: Galerkin method, error bounds, monotone operator
Article copyright: © Copyright 1972 American Mathematical Society