TWO OBSERVATIONS ON THE CONGRUENCE EXTENSION PROPERTY

G. GRÄTZER AND H. LAKSER

Abstract. A pair of algebras \(\mathfrak{A}, \mathfrak{B} \) with \(\mathfrak{B} \) a subalgebra of \(\mathfrak{A} \) is said to have the (Principal) Congruence Extension Property (abbreviated as PCEP and CEP, respectively) if every (principal) congruence relation of \(\mathfrak{B} \) can be extended to \(\mathfrak{A} \). A pair of algebras \(\mathfrak{A}, \mathfrak{B} \) is constructed having PCEP but not CEP, solving a problem of A. Day. A result of A. Day states that if \(\mathfrak{B} \) is a subalgebra of \(\mathfrak{A} \) and if for any subalgebra \(\mathfrak{C} \) of \(\mathfrak{A} \) containing \(\mathfrak{B} \), the pair \(\mathfrak{A}, \mathfrak{C} \) has PCEP, then \(\mathfrak{A}, \mathfrak{B} \) has CEP. A new proof of this theorem that avoids the use of the Axiom of Choice is also given.

1. The example. Let \(\mathfrak{A} = \{a, b, c, d, e, f\} \). We define a binary operation + on \(\mathfrak{A} \) by \(a+f = e, \; b+f = e, \; x+y = x \) otherwise. Let \(\mathfrak{A} = \langle A; + \rangle \) and \(\mathfrak{B} = \{a, b, c, d\} \). Then \(\mathfrak{B} \) is a subalgebra of \(\mathfrak{A} \). An easy computation shows that \(\mathfrak{A}, \mathfrak{B} \) has PCEP. Now let \(\Theta = \Theta_b(a, c) \lor \Theta_b(b, d) \). Then \(c \not\equiv d(\Theta) \). However, if \(\Theta \) denotes the smallest congruence of \(\mathfrak{A} \) with \(\Theta \geq \Theta_b \), then \(a \equiv c(\Theta) \); hence \(a+f \equiv c+f(\Theta) \), that is, \(e \equiv c(\Theta) \). Similarly, \(b \equiv d(\Theta) \), and so \(e \equiv d(\Theta) \). By transitivity, \(e \equiv d(\Theta) \). Thus \(\Theta \not\subseteq \Theta \). This means that the pair \(\mathfrak{A}, \mathfrak{B} \) does not have CEP.

2. The proof. We want to prove the following important

Theorem (A. Day [1]). Let \(\mathfrak{A} \) be an algebra and \(\mathfrak{B} \) a subalgebra of \(\mathfrak{A} \). If PCEP holds for any pair \(\mathfrak{A}, \mathfrak{C} \) where \(\mathfrak{C} \) contains \(\mathfrak{B} \), then \(\mathfrak{A}, \mathfrak{B} \) has CEP.

Our proof, as well as Day’s, is based on the following (A. W. Goldie [3], see also G. Grätzer [4] and Exercise 64 of Chapter 1 in G. Grätzer [5]):

Lemma. Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be algebras and let \(\mathfrak{B} \) be a subalgebra of \(\mathfrak{A} \). Let \(\Phi \) be a congruence relation of \(\mathfrak{A} \) and \(\Theta \) be a congruence relation of \(\mathfrak{B} \) satisfying \(\Phi \supseteq \Theta \). Set \(D = \{B|\Phi = \{x|x \in A, x \equiv y(\Phi) \text{ for some } y \in B\} \}. \) We define
a binary relation $\Theta(\Phi)$ on D by the rule $u \equiv v(\Theta(\Phi))$ iff $u \equiv x(\Phi)$, $x \equiv y(\Theta)$, $y \equiv v(\Phi)$ for some $x, y \in B$. Then D is a subalgebra of A and $\Theta(\Phi)$ is a congruence relation on D. Furthermore, $(\Theta(\Phi))_B = \Theta$.

Proof of the Theorem. Let A and B be given as in the Theorem. We shall prove that, for any subalgebra C of A containing B, the pair A, C has CEP. Let Θ be a congruence relation on C and let $\bar{\Theta}$ be the smallest congruence relation on A satisfying $\bar{\Theta}_C \geq \Theta$. Obviously,

$$\bar{\Theta} = \lor (\Theta_A(x, y) \mid x, y \in C \text{ and } x \equiv y(\Theta)).$$

We want to show that

(1) for $a, b \in C$, $a \equiv b(\bar{\Theta})$ implies that $a \equiv b(\Theta)$

(this is CEP). In view of the formula for $\bar{\Theta}$ and the way joins of congruences can be described, (1) is equivalent to:

(2) For any subalgebra C of A with $B \subseteq C$, if $a, b \in C$, $a_1, b_1, \ldots, a_n, b_n \in C$, $a_i \equiv b_i(\Theta)$ for $i = 1, \ldots, n$, $a = x_0, x_1, \ldots, x_n = b$, $x_i \in A$ for $i = 1, \ldots, n - 1$, and $x_{i-1} \equiv x_i(\Theta_C(a_i, b_i))$ for $i = 1, \ldots, n$, then $a \equiv b(\Theta)$.

We prove this statement by induction on n. For $n = 1$ it is obvious since A, C has PCEP. Now assume that $n > 1$ and that the statement is valid for $n - 1$. Set $D = [C]^{\Theta_A(a_n, b_n)}$, $\Theta_0 = \Theta_\emptyset(a_1, b_1) \lor \cdots \lor \Theta_\emptyset(a_n, b_n)$. Since PCEP holds for A, C, we have $(\Theta_A(a_n, b_n))_C \leq \Theta_0$; hence we can form $\Psi = \Theta_\emptyset(\Theta_A(a_n, b_n))$ and it will satisfy $\Psi_C = \Theta_0$. Now observe that A, D, $a = x_0, \ldots, x_{n-1}, a_1, b_1, \ldots, a_{n-1}, b_{n-1}$, and Ψ satisfy the assumptions of (2) with $n - 1$, hence we can conclude that $a \equiv x_{n-1}(\Psi)$. Obviously, $x_{n-1} \equiv x_n(\Psi)$, hence $a \equiv b(\Psi)$. Since $a, b \in C$ and $\Psi_C = \Theta_0 \leq \Theta$ we conclude that $a \equiv b(\Theta)$, completing the proof of (2). If we now let $C = B$ the theorem follows.

References

Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada