TENSOR PRODUCTS OF QUATERNION ALGEBRAS*

A. A. ALBERT1

Abstract. Two quaternion division algebras have a common quadratic subfield if their tensor product contains zero-divisors.

Let Q_1 and Q_2 be quaternion division algebras over a field K. If Q_1, Q_2 have a common quadratic subfield, it is evident that $Q_1 \otimes Q_2$ contains zero-divisors (all tensor products are taken over K). In this note we shall prove that the converse is true.

Theorem. Let Q_1, Q_2 be quaternion division algebras with center K. Suppose that $Q_1 \otimes Q_2$ is not a division algebra. Then Q_1 and Q_2 possess a common quadratic subfield.

Proof. Let $K(u)$ be a separable quadratic subfield of Q_2, and let the nontrivial automorphism of $K(u)$ over K be given by $u \mapsto u'$. We complete a generation of Q_2 with an element v such that $uv = vu$. We have that $uv = a$ and $v^2 = b$, where a and b are nonzero elements of K. Write $L = Q_1 \otimes K(u)$. If L is not a division algebra, then Q_1 contains a subfield isomorphic to $K(u)$, and we are done. So the proof need only continue on the assumption that L is a division algebra.

We have that $Q_1 \otimes Q_2$ is the vector space direct sum of L and Lv. The given zero-divisor thus has the form $p + qv$ with $p, q \in L$. Necessarily $q \neq 0$, and we can renormalize to make $q = 1$. Write $p = c + du$, with $c, d \in Q_1$, and set $p^* = c + du'$. Note that u and v commute with c and d. Thus we have $vp = p^* v$ (and also $pv = vp^*$). Hence $(p + v)(p^* - v) = pp^* - v^2 = pp^* - b$. This element is a zero-divisor and lies in L; hence it is 0. So

\[
b = pp^* = (c + du)(c + du')
= c^2 + d^2a + dcu + cdv'
= c^2 + d^2a + (dc - cd)u + cd(u + u').
\]

Received by the editors January 6, 1972.

AMS 1970 subject classifications. Primary 16A40, 16A46.

1 Research supported by National Science Foundation grant GP-30242.

* This paper is being published posthumously. Professor Albert died on June 6, 1972.

1 American Mathematical Society 1972
Since \(u + u' \in K \), we deduce from this that \(c \) and \(d \) commute. We next note that

\[
(pv)^2 = pvvp = pp^*v^2 = b^2.
\]

Write \(F \) for the field generated over \(K \) by \(c \) and \(d \). If \(F \otimes Q_2 \) is a division algebra, we can deduce from \((pv)^2 = b^2\) that \(pv = \pm b^2 \), \(p = \pm v \), a contradiction. Hence \(F \otimes Q_2 \) is not a division algebra, and it follows that \(Q_2 \) contains a quadratic subfield isomorphic to \(F \), as desired.

I discovered this theorem some time ago. There appears to be some continuing interest in it, and I am therefore publishing it now.

Department of Mathematics, University of Chicago, Chicago, Illinois 60637