Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quotient rings of endomorphism rings of modules with zero singular submodule


Authors: John Hutchinson and Julius Zelmanowitz
Journal: Proc. Amer. Math. Soc. 35 (1972), 16-20
MSC: Primary 16A40
DOI: https://doi.org/10.1090/S0002-9939-1972-0297805-X
MathSciNet review: 0297805
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Throughout this paper (R, M, N, S) will denote a Morita context satisfying a certain nonsingularity condition. For such contexts we give necessary and sufficient conditions in terms of M and R for S to have a semisimple maximal left quotient ring; respectively a full linear maximal left quotient ring, a semisimple classical left quotient ring. In doing so we extend the corresponding well-known theorems for rings (employing them in the process) to endomorphism rings.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur, Rings of quotients and Morita contexts, J. Algebra 17 (1971), 273-298. MR 0414604 (54:2704)
  • [2] H. Bass, The Morita theorems, Lecture Notes, University of Oregon, Eugene, Oregon, 1962.
  • [3] C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., no. 49, Springer-Verlag, New York, 1967. MR 37 #2791. MR 0227206 (37:2791)
  • [4] A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201-220. MR 22 #2627. MR 0111766 (22:2627)
  • [5] R. E. Johnson and E. T. Wong, Self-injective rings, Canad. Math. Bull. 2 (1959), 167-173. MR 21 #5652. MR 0106922 (21:5652)
  • [6] J. J. Hutchinson, Quotient full linear rings, Proc. Amer. Math. Soc. 28 (1971), 375-378. MR 0424867 (54:12825)
  • [7] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
  • [8] F. L. Sandomierski, Semisimple maximal quotient rings. Trans. Amer. Math. Soc. 128 (1967), 112-120. MR 35 #5473. MR 0214624 (35:5473)
  • [9] J. M. Zelmanowitz, Endomorphism rings of torsionless modules, J. Algebra 5 (1967), 325-341. MR 34 #2626. MR 0202766 (34:2626)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A40

Retrieve articles in all journals with MSC: 16A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0297805-X
Keywords: Endomorphism rings, Morita contexts, singular submodule, quotient rings, full linear rings, Goldie dimension
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society