Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On an induction theorem for relative Grothendieck groups


Author: William H. Gustafson
Journal: Proc. Amer. Math. Soc. 35 (1972), 26-30
MSC: Primary 20C15
DOI: https://doi.org/10.1090/S0002-9939-1972-0297891-7
MathSciNet review: 0297891
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an improvement in the proof of Dress' induction theorem for relative Grothendieck rings.


References [Enhancements On Off] (What's this?)

  • [1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, 2nd ed., Interscience, New York, 1966. MR 0144979 (26:2519)
  • [2] A. Dress, On integral and modular relative Grothendieck rings, Multicopied Notes of the Summer Open House for Algebraists, Aarhus University, 1970, pp. 85-108. MR 0274606 (43:369)
  • [3] -, Relative Grothendieckringe über semilokalen Dedekindringen, Surjektivität des Reduktionshomomorphismus und ein Theorem von Swan (to appear).
  • [4] W. Gustafson, Integral relative Grothendieck rings, J. Algebra (to appear). MR 0308243 (46:7357)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15

Retrieve articles in all journals with MSC: 20C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0297891-7
Keywords: Induction theorem, relative Grothendieck group
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society