Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonfactorization in subsets of the measure algebra


Author: J. T. Burnham
Journal: Proc. Amer. Math. Soc. 35 (1972), 104-106
MSC: Primary 43A10; Secondary 42A96
DOI: https://doi.org/10.1090/S0002-9939-1972-0298342-9
MathSciNet review: 0298342
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we unify and simplify some recent results showing the impossibility of factoring in certain convolution subalgebras of the group algebra of a nondiscrete LCAG. A new result is a direct proof of nonfactorization of the classical Hardy spaces, regarded as convolution algebras, on the circle. By considering the ideal of Hilbert-Schmidt operators in the algebra of compact operators on a Hilbert space we illustrate that nonfactorization is not peculiar to convolution.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Isomorphism between $ {H^p}$ and $ {L^p}$, Amer. J. Math. 77 (1955), 655-656. MR 17, 1080. MR 0077704 (17:1080e)
  • [2] J. T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc. 32 (1972), 551-555. MR 0295078 (45:4146)
  • [3] -, Closed ideals in subalgebras of Banach algebras. II: Ditkin's condition (in preparation); Notices Amer. Math. Soc. 17 (1970), 815. Abstract #70T-B149.
  • [4] J. Cigler, Normed ideals in $ {L^1}(G)$, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 273-282. MR 40 #3327. MR 0250086 (40:3327)
  • [5] P. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. MR 21 #3729. MR 0104982 (21:3729)
  • [6] R. E. Edwards, On functions which are Fourier transforms, Proc. Amer. Math. Soc. 5 (1954), 71-78. MR 15, 633. MR 0060158 (15:633a)
  • [7] C. C. Graham, $ {M_0}(G)$ is not a prime ideal of measures, Proc. Amer. Math. Soc. 27 (1971), 551-562. MR 0278007 (43:3739)
  • [8] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964), 147-155. MR 32 #4471. MR 0187016 (32:4471)
  • [9] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378. MR 0262773 (41:7378)
  • [10] J. C. Martin and L. Y. H. Yap, The algebra of functions with Fourier transforms in $ {L^p}$, Proc. Amer. Math. Soc. 24 (1970), 217-219. MR 40 #646. MR 0247378 (40:646)
  • [11] H. Reiter, $ {L^1}$-algebras and Segal algebras, Lecture Notes in Math., no. 231, Springer-Verlag, Berlin and New York, 1971. MR 0440280 (55:13158)
  • [12] -, Classical harmonic analysis and locally compact groups, Oxford Math. Monographs, Clarendon Press, Oxford, 1968. MR 0306811 (46:5933)
  • [13] W. Rudin, Factorization in the group algebra of the real line, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 339-340. MR 19, 46. MR 0085476 (19:46c)
  • [14] -, Representation of functions by convolutions, J. Math. Mech. 7 (1958), 103-115. MR 21 #3728. MR 0104981 (21:3728)
  • [15] R. Salem, Sur les transformations des séries de Fourier, Fund. Math. 33 (1939), 108-114. MR 0000435 (1:73g)
  • [16] N. Th. Varopoulos, Sur les mesures de Radon, d'un groupe localement compact abélien, C. R. Acad. Sci. Paris 258 (1964), 3805-3808. MR 28 #4386. MR 0161178 (28:4386)
  • [17] H.-C. Wang, Non-factorization in group algebras, Studia Math. (to appear); See also, Ph.D. Dissertation, University of Iowa, Iowa City, Iowa, 1971.
  • [18] L. Yap, Ideals in subalgebras of the group algebras, Studia Math. 35 (1970), 165-175. MR 42 #4968. MR 0270075 (42:4968)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A10, 42A96

Retrieve articles in all journals with MSC: 43A10, 42A96


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0298342-9
Keywords: Convolution, measure algebras, factorization, Banach algebras, Segal algebras, normed ideals
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society