NONEXISTENCE OF ASYMPTOTIC OBSERVABLES

JAMES S. HOWLAND

Abstract. Strong asymptotic limits of all Heisenberg observables exist only for trivial Hamiltonians.

Let \(H \) be a selfadjoint operator on a separable Hilbert space \(\mathcal{H} \). Lavine [1] has introduced into scattering theory the study of the algebra of bounded operators \(\mathcal{A} \) for which the strong asymptotic limits

\[
\lim_{t \to \pm \infty} e^{-iHt} A e^{iHt}
\]

of the Heisenberg observables \(A(t) = e^{-iHt} A e^{iHt} \) exist. It is therefore of some interest that this algebra coincides with \(\mathcal{B}(\mathcal{H}) \) only in the trivial case.

Theorem. The limit (*) exists for every bounded \(A \) iff \(H \) is a constant multiple of the identity.

Proof. Suppose that \(H \) is not a multiple of \(I \). If \(H \) has two distinct eigenvalues \(\lambda \) and \(\mu \) with eigenvectors \(\phi \) and \(\psi \), choose \(A = (\cdot, \phi) \psi \). Then \(A(t) = e^{i(t–\mu)H}(\cdot, \phi) \psi \) has no limit. Otherwise, \(H \) has a nontrivial continuous part, and since it suffices to construct \(A \) on a reducing subspace of \(H \), one may assume that \(H \) is multiplication by \(\lambda \) on \(L^2([a, b], dg) \) where \(g(\lambda) \) is a continuous increasing function with \(g(a) = 0 \) and \(g(b) = 1 \). If every interval \([\alpha, \beta)\) on which \(g(\lambda) \) is constant is deleted from \([a, b)\), the remaining set supports \(dg \) and is mapped by \(g \) in a one-one measure-preserving fashion onto \([0, 1)\) with Lebesgue measure. Under this change of variables, \(H \) becomes multiplication by the strictly increasing function \(\alpha(x) = g^{-1}(x) \) on \(L^2[0, 1) \). In this representation, choose \(A f(x) = f(1–x) \), so that

\[
A(t) f(x) = e^{-i \beta(x) \lambda} f(1–x)
\]

where \(\beta(x) = \alpha(x) – \alpha(1–x) \) is strictly increasing. Since

\[
\| A(t) f – A(s) f \|^2 = \int_0^1 |1 – e^{i \beta(x)(t–s)}| f(1–x)|^2 dx
\]

Received by the editors November 8, 1971.

AMS 1970 subject classifications. Primary 47A40; Secondary 81A48.

1 Supported by ARO Grant DA-ARO-D-31-124-G1005.
which depends only on $t-s$, the strong limit can exist only if the right side vanishes for all t and s. But since $\beta(x)$ is strictly increasing, this implies that $f=0$.

Reference

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903