Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The analytic properties of $ G\sb{2n}$ spaces


Author: Donald O. Koehler
Journal: Proc. Amer. Math. Soc. 35 (1972), 201-206
MSC: Primary 46B05
DOI: https://doi.org/10.1090/S0002-9939-1972-0301486-6
MathSciNet review: 0301486
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A complex vector space X will be called an $ {F_{2n}}$ space if and only if there is a mapping $ \langle \cdot , \cdots , \cdot \rangle $ from $ {X^{2n}}$ into the complex numbers such that: $ \langle x, \cdots ,x\rangle > 0$ if $ x \ne 0;{x_k} \to \langle {x_1}, \cdots ,{x_{2n}}\rangle $ is linear for $ k = 1, \cdots ,n;\langle {x_1}, \cdots ,{x_{2n}}\rangle = {\langle {x_{2n}}, \cdots ,{x_1}\rangle ^ - }$ where denotes complex conjugate; $ \langle {x_{\sigma (1)}}, \cdots ,{x_{\sigma (n)}},{y_{\tau (1)}}, \cdots ,{y_{\tau (n)}}\rangle = \langle {x_1}, \cdots ,{x_n},{y_1}, \cdots ,{y_n}\rangle $ for all permutations $ \sigma ,\tau $ of $ \{ 1, \cdots ,n\} $. In the case of a real vector space the mapping is assumed to be into the reals such that: $ \langle x, \cdots ,x\rangle > 0$ if $ x \ne 0;{x_k} \to \langle {x_1}, \cdots ,{x_{2n}}\rangle $ is linear for $ k = 1, \cdots ,2n;\langle {x_{\sigma (1)}}, \cdots ,{x_{\sigma (2n)}}\rangle = \langle {x_1}, \cdots ,{x_{2n}}\rangle $ for all permutations $ \sigma $ of $ \{ 1, \cdots ,2n\} $. In either case, if $ \left\Vert x \right\Vert = {\langle x, \cdots ,x\rangle ^{1/2n}}$ defines a norm, X is called a $ {G_{2n}}$ space (Trans. Amer. Math. Soc. 150 (1970), 507-518). It is shown that an $ {F_{2n}}$ space is a $ {G_{2n}}$ space if and only if $ \vert\langle x,y, \cdots ,y\rangle {\vert^{2n}} \leqq \langle x, \cdots ,x\rangle {\langle y, \cdots ,y\rangle ^{2n - 1}}$ and that $ {G_{2n}}$ spaces are examples of uniform semi-inner-product spaces studied by Giles (Trans. Amer. Math. Soc. 129 (1967), 436-446).


References [Enhancements On Off] (What's this?)

  • [1] E. Berkson, Some types of Banach spaces, Hermitian operators and Bade functionals, Trans. Amer. Math. Soc. 116 (1965), 376-385. MR 32 #4554. MR 0187100 (32:4554)
  • [2] L. Blumenson, A generalized polarization identity, Amer. Math. Monthly 70 (1963), 277-281. MR 26 #6364. MR 0148867 (26:6364)
  • [3] J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446. MR 36 #663. MR 0217574 (36:663)
  • [4] C. A. Greenhall, $ {L_q}$ estimates for rearrangements of trigonometric series, J. Math. Mech. 16 (1966), 311-319. MR 34 #3200. MR 0203347 (34:3200)
  • [5] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. MR 9, 42. MR 0021241 (9:42c)
  • [6] D. O. Koehler, $ {G_{2n}}$ spaces, Trans. Amer. Math. Soc. 150 (1970), 507-518. MR 41 #7411. MR 0262806 (41:7411)
  • [7] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43. MR 24 #A2860. MR 0133024 (24:A2860)
  • [8] M. Marcus and S. Pierce, Symmetric positive definite multilinear functionals with a given automorphism, Pacific J. Math. 31 (1969), 119-132. MR 40 #7288. MR 0254077 (40:7288)
  • [9] T. V. Panchapagesan, Unitary operators in Banach spaces, Pacific J. Math. 22 (1967), 465-475. MR 35 #4762. MR 0213908 (35:4762)
  • [10] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), 249-253. MR 1546121
  • [11] S. Pierce, Orthogonal groups of positive definite multilinear functionals, Pacific J. Math. 33 (1970), 183-189. MR 41 #5395. MR 0260772 (41:5395)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B05

Retrieve articles in all journals with MSC: 46B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0301486-6
Keywords: Uniform semi-inner-product spaces, $ {G_{2n}}$ spaces, $ {F_{2n}}$ spaces, norms from multilinear forms, operators preserving multilinear forms
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society