BOUNDARY ZERO SETS OF A^∞ FUNCTIONS SATISFYING GROWTH CONDITIONS

B. A. TAYLOR AND D. L. WILLIAMS

Abstract. Let A denote the algebra of functions analytic in the open unit disc D and continuous in D, and let

$$A^\infty = \{ f \in A : f^{(n)} \in A, n = 0, 1, 2, \cdots \}.$$

For $f \in A$ denote the set of zeros of f in D by $Z^0(f)$, and for $f \in A^\infty$ let $Z^\infty(f) = \bigcap_{n=0}^{\infty} Z^0(f^{(n)})$. We study the boundary zero sets of A^∞ functions F satisfying, for some sequence $\{M_n\}$ and some $B>0$,

$$(1) \quad |F^{(n)}(z)| \leq n! B^n M_n, \quad z \in \bar{D}, n = 0, 1, 2, \cdots.$$

In particular, when $M_n = \exp(n^p)$, $p > 1$, it is shown that for E, a proper closed subset of ∂D, there exists $F \in A^\infty$ satisfying (1) and with $Z^\infty(F) = Z^\infty(E) = E$ if and only if

$$\int_{\partial D} |\log \rho(\theta, E)|^p d\theta < +\infty.$$

Here $\rho(z, E)$ is the distance from z to E and $(1/p) + (1/q) = 1$.

Let A denote the algebra of functions analytic in the open unit disc D and continuous in \bar{D}, and let $A^\infty = \{ f \in A : f^{(n)} \in A, n = 0, 1, 2, \cdots \}$. For $f \in A$ denote the set of zeros of f in D by $Z^0(f)$, and for $f \in A^\infty$ let $Z^\infty(f) = \bigcap_{n=0}^{\infty} Z^0(f^{(n)})$. We study the boundary zero sets of A^∞ functions F satisfying, for some sequence $\{M_n\}$ and some $B>0$,

$$(1) \quad |F^{(n)}(z)| \leq n! B^n M_n, \quad z \in \bar{D}, n = 0, 1, 2, \cdots.$$

In particular, when $M_n = \exp(n^p)$, $p > 1$, it is shown that for E, a proper closed subset of ∂D, there exists $F \in A^\infty$ satisfying (1) and with $Z^\infty(F) = Z^\infty(E) = E$ if and only if

$$\int_{\partial D} |\log \rho(\theta, E)|^p d\theta < +\infty.$$

Here $\rho(z, E)$ is the distance from z to E and $(1/p) + (1/q) = 1$.

Before outlining the construction which yields the result stated above, let us recall some known facts and make a few simple observations. If $f \in A, f \neq 0$, and satisfies a Lipschitz condition of order α, $|f(z) - f(z')| \leq \cdots$
\[C|z-z'|^a, \text{ then } \log |f(z)| \leq a \log \rho(z, Z^\theta(f)) + \log C; \text{ and, consequently,} \]
\[\int_{-\pi}^{\pi} \log \rho(e^{i\theta}, Z^\theta(f)) \, d\theta > -\infty \text{ by Riesz's theorem. Conversely, Carleson [1] showed that if } E \subset \partial D \text{ is closed and} \]
\[(2) \int_{-\pi}^{\pi} \log \rho(e^{i\theta}, E) \, d\theta > -\infty, \]
then for any \(m > 0 \) there exists an outer function
\[F \in A^m = \{ f \in A : f, f', \cdots, f^{(m)} \in A \} \]
such that \(Z^\theta(F) = Z^\theta(F') = \cdots = Z^\theta(F^{(m)}) = E \). This result has been extended to show that there exists an \(F \) in \(A^\infty \) with \(Z^\theta(F) = Z^\infty(F) = E \) (see [5], [6], or [7]). The extension is also a consequence of a recent theorem of Carleson and S. Jacob, which implies that an outer function \(F \in A \) with \(|F| \in C^\infty(\partial D) \) belongs to \(A^\infty \).

In case \(F \) satisfies the stronger hypothesis (1) we can say more. For, if \(F \in A^\infty, F \neq 0, \text{ and } E = Z^\infty(F) \), then it follows from Taylor's formula with remainder that
\[|F(z)| \leq (n!)^{-1} \rho(z, E)^n \max \{|F^{[n]}(z) : z \in D\}, \quad n = 0, 1, 2, \cdots. \]
Thus, because of (1), \(|F(z)| \leq \rho(z, E)^n B^n M_n \), so that
\[-\log |F(e^{i\theta})| \geq \sup \{-n \log \rho(e^{i\theta}, E) - \log B^n M_n : n = 0, 1, 2, \cdots \}. \]
The integrability of \(\log |F(e^{i\theta})| \) then implies that
\[(3) \int_{-\pi}^{\pi} g^*(-\log \rho(e^{i\theta}, E)) \, d\theta < +\infty \]
where \(g^*(x) = \sup \{nx - \log B^n M_n : n = 0, 1, 2, \cdots\} \). This was already noted by Carleson [1, p. 330] (with similar proof) in case \(M_n = (n!)^a \). See also A. Chollet [2].

It is not to be expected that (3) is, in general, a sufficient condition for the existence of \(F \in A^\infty \) satisfying (1) and with \(Z^\theta(F) = Z^\infty(F) = E \). For example, in the case \(E = \{1\} \), it is known [4, Theorem 1, equation 6] that the necessary and sufficient condition is
\[(4) \int_{-\pi}^{\pi} h^*(-2 \log \rho(e^{i\theta}, E)) \, d\theta < +\infty \]
where \(h^*(x) = \sup \{nx - \log n! B^n M_n : n = 0, 1, \cdots\} \). In particular, if \(M_n = n! (\log(n+1))^{kn} \) with \(1 < k \leq 2 \), then the integral (4) diverges while the integral (3) converges.

Our construction of \(A^\infty \) outer functions satisfying a growth condition of form (1) is based on the following theorem. As above, \(E \) is a proper
closed subset of ∂D and $\rho(z) = \rho(z, E)$ is the distance from z to E. Also, if $\{e^{i\alpha_n}, e^{i\beta_n}\}$ are the complementary arcs of E in ∂D, define

$$\tilde{\rho}(\theta) = \frac{1}{2\pi} \left(\frac{1}{\theta - a_n} + \frac{1}{b_n - \theta} \right)^{-1}, \quad \theta \in (a_n, b_n)$$

$$= 0, \quad e^{i\theta} \in E.$$

Note that $(4\pi)^{-1} \rho(e^{i\theta}) \leq \tilde{\rho}(\theta) \leq \frac{1}{4} \rho(e^{i\theta}) \leq \frac{1}{2}.$

Theorem 1. Let λ^* be a nonnegative convex infinitely differentiable function such that $\varphi(e^{i\theta}) = \lambda^*(-2 \log \tilde{\rho}(\theta))$ satisfies

(i) $(1/2\pi) \int_{-\pi}^{\pi} |\varphi(e^{i\theta})| \, d\theta \leq M < +\infty$ for some constant M;

(ii) $|\frac{d^n}{d\theta^n} \varphi(e^{i\theta})| \leq n! K^{n+1} \rho(e^{i\theta})^{-n-1}, \quad e^{i\theta} \in \partial D \sim E, \quad n = 0, 1, 2, \ldots,$

for some constant $K > 0$;

(iii) for every constant $C > 0$, $\varphi(e^{i\theta}) + C \log \rho(e^{i\theta}) \to +\infty$ as $\rho(e^{i\theta}) \to 0$.

Then there exists an outer function $F \in A^\infty$ with $Z^0(F) = Z^\infty(F) = E$ and a constant $B > 0$ such that

$$|F^{(n)}(z)| \leq n! B^n e^{\lambda(n)}, \quad n = 0, 1, \ldots,$$

where $\lambda(n) = \sup \{nx - \lambda^*(x) : x > 0\}$.

Proof. Let

$$G(z) = G(z, \varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \varphi(e^{i\theta}) \, d\theta, \quad z \in D,$$

and let $F = \exp(-G)$. We first assert that the derivatives of G satisfy, for some $K_0 \geq 1$, $|G^{(n+1)}(z)| \leq n! K_0^{n+1} \rho(z)^{-n-1}, \quad n = 0, 1, 2, \ldots$. This may be proved by repeating the proof of Lemma 2.3 of [6] and keeping track of the constants which appear there. We omit the details of this computation. In particular, we have the slightly weaker estimate

$$|G^{(n+1)}(z)| \leq n! (2K_0^2)^{n+1} \rho(z)^{-n-2}, \quad n = 0, 1, 2, \ldots.$$

Next we claim that

$$|F^{(n)}(z)| \leq n! (4K_0^2)^{n+1} |F(z)| \rho(z)^{-2n}, \quad n = 0, 1, \ldots.$$

The proof is by induction on n. Now (6) is clear for $n = 0$. Assume (6) for $n = 0, 1, \ldots, j$. For $n = j + 1$,

$$|F^{(j+1)}(z)| = \left| \frac{d^j}{dz^j} F(z)G(z) \right| \leq \sum_{n=0}^{j} \binom{j}{n} |F^{(j-n)}(z)| G^{(n+1)}(z)|$$

$$\leq j! 2^{j-3} (K_0^2)^{j+2} |F(z)| \sum_{n=0}^{j} 2^{j-n} \rho(z)^{-2(j-n)}.$$
Since \(\rho(z) \leq 2 \), \(2^{j-n} \rho(z)^{-2(j+1)+n} \leq 2^{j+1} \rho(z)^{-2(j+1)} \). Hence

\[
\sum_{n=0}^{j} 2^{j-n} \rho(z)^{-2(j+1)+n} \leq (j + 1) 2^{j+1} \rho(z)^{-2(j+1)},
\]

and (6) follows.

Because \(|F^{(n)}(z)| \leq D_n \rho(z)^{-2n} \) for some constant \(D_n > 1 \),

\[
\log |F^{(n)}(re^{i\theta})| \leq -2n \log \rho(re^{i\theta}) + \log D_n,
\]

and so

\[
\log^+ |F^{(n)}(re^{i\theta})| \leq -2n \log \rho(re^{i\theta}) + \log D_n + 2n \log 2
\]

\[
\leq -2n \log \rho(e^{i\theta}) + \log D_n + 4n \log 2,
\]

where the last inequality follows from \(\rho(e^{i\theta}) \leq 2 \rho(re^{i\theta}) \).

Since \(\log \rho(e^{i\theta}) \) is integrable, \(F^{(n)} \) is of bounded characteristic on \(D \) (i.e. of class \(N \)). Moreover, the dominated convergence theorem implies that

\[
\lim_{r \to 1} \int_{-\pi}^{\pi} \log^+ |F^{(n)}(re^{i\theta})| \, d\theta = \int_{-\pi}^{\pi} \log^+ |F^{(n)}(e^{i\theta})| \, d\theta.
\]

Consequently, \(F^{(n)} \) has the factorization \(B_n S_n H_n \) where \(B_n \) is a Blaschke product, \(S_n \) is a singular inner function, and \(H_n \) is an outer function for the class \(N \). See e.g. [3, p. 26]. Thus \(F^{(n)} \) has the bound (5) iff the boundary values of \(F^{(n)} \) have this bound. By (6),

\[
|F^{(n)}(e^{i\theta})| \leq n! (4K_0^n)^{n+1} |F(e^{i\theta})| \rho(e^{i\theta})^{-2n} \quad \text{a.e.}
\]

Hence, for some constant \(B > 0 \),

\[
|F^{(n)}(e^{i\theta})| \leq n! B^n |F(e^{i\theta})| \rho(\theta)^{-2n} \quad \text{a.e.}
\]

or

\[
|F^{(n)}(e^{i\theta})| \leq n! B^n \exp[-2n \log \rho(\theta) - \lambda^*(-2 \log \rho(\theta))] \quad \text{a.e.}
\]

\[
(7)
\]

This establishes (5) and also shows that \(F \in A^\infty \). It is clear from the definition of \(F \), (iii), and (7) that \(Z^0(F) = Z^\infty(F) = E \).

THEOREM 2. Let \(E \) be a proper closed subset of \(\partial D \). A necessary and sufficient condition that there exists \(F \in A^\infty \) with \(Z^0(F) = Z^\infty(F) = E \) and a constant \(B > 0 \) such that

\[
|F^{(n)}(z)| \leq n! B^n e^{nP}, \quad n = 0, 1, \ldots,
\]

where \(p > 1 \), is that \(\int_{-\pi}^{\pi} |\log \rho(e^{i\theta})| \, d\theta < +\infty \), \((1/p) + (1/q) = 1\).

Proof. Assuming the existence of such an \(F \), (3) holds with \(g^*(x) = \sup\{nx - n \log B - n^p : n = 0, 1, \ldots\} \). A routine calculation shows \(X^2 = O(g^*(x)) \) for large \(x \). Hence \(|\log \rho(e^{i\theta})| \) is integrable.
For the converse we apply Theorem 1 with $\lambda^*(x) = \frac{p/q}{x/p}$. For this λ^*, straightforward calculations verify that the hypotheses of Theorem 1 are satisfied and that $\lambda(n) = n^p$.

Theorem 1 also gives information in some cases when we do not know that (3) is a sufficient condition. For example, the following theorem, due to A. Chollet [2], may be obtained.

Theorem 3. Let E be a proper closed subset of ∂D. If there exists $F \in A^\infty$, $F \not\equiv 0$, with $Z^\infty(F) \supset E$ and a constant $B > 0$ such that

$$|F^{(n)}(z)| \leq B^n(n!)^\alpha, \quad n = 0, 1, \ldots,$$

where $\alpha > 1$, then

$$\int_{-\pi}^{\pi} \rho(e^{i\theta}, E)^{-1/(\alpha-1)} d\theta < +\infty.$$

In the converse direction, if $\alpha > 2$ and (10) holds, then there exists $F \in A^\infty$ with $Z^\infty(F) = Z^\infty(F) = E$ and a constant $B > 0$ such that $|F^{(n)}(z)| \leq B^n(n!)^{2\alpha-1}$, $n = 0, 1, \ldots$.

Proof. If $F \in A^\infty$ with $Z^\infty(F) \supset E$ satisfies (9), then (3) holds with $g^*(x) = \sup\{nx - \log B^n(n!)^{\alpha-1} : n = 0, 1, \ldots\}$. Since $e^{x/(x-1)} = O(g^*(x))$ for large x, (3) implies (10). In the converse direction apply Theorem 1 with $\lambda^*(x) = 2e^{1-(x-a-1)}$. Then $q(e^{i\theta}) = 2e^{-1}(x-a-1)\rho(\theta)^{-1/(\alpha-1)}$ and is easily seen to satisfy (i), (ii), and (iii) of Theorem 1. A simple calculation shows

$$e^{x(n)} = O(e^{2(x-a-1)}n(n!)^{2\alpha-1}).$$

Remark. Theorem 3 gives another proof that the class of A^∞ functions satisfying (9) for $1 < \alpha < 2$ is quasi-analytic.

Remark. Mme. Chollet has sharpened the last part of Theorem 3 (unpublished) by showing that the exponent $2\alpha - 1$ may be replaced by $2\alpha - 2$.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210