Asymptotic behavior of solutions of perturbed linear systems
Author:
L. E. Bobisud
Journal:
Proc. Amer. Math. Soc. 35 (1972), 457-463
MSC:
Primary 34D05
DOI:
https://doi.org/10.1090/S0002-9939-1972-0301313-7
MathSciNet review:
0301313
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The existence of solutions of the system having the form
is proved, where
satisfies
and the vector
has limit
as t increases. Estimates for the rate of convergence to zero of
and of
are obtained.
- [1] J. W. Bebernes and N. X. Vinh, On the asymptotic behavior of linear differential equations, Amer. Math. Monthly 72 (1965), 285-287. MR 31 #6011. MR 0181784 (31:6011)
- [2] F. Brauer and J. S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations 6 (1969), 142-153. MR 39 #570. MR 0239213 (39:570)
- [3] W. A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, Mass., 1965. MR 32 #7875. MR 0190463 (32:7875)
- [4] J. K. Hale and N. Onuchic, On the asymptotic behavior of solutions of a class of differential equations, Contributions to Differential Equations 2 (1963), 61-75. MR 28 #2281. MR 0159063 (28:2281)
- [5] T. G. Hallam, Asymptotic behavior of the solution of an nth order nonhomogeneous ordinary differential equation, Trans. Amer. Math. Soc. 122 (1966), 177-194. MR 32 #6000. MR 0188562 (32:6000)
- [6] I. N. Katz, Asymptotic behavior of solutions to some nth order linear differential equations, Proc. Amer. Math. Soc. 21 (1969), 657-662. MR 0239199 (39:556)
- [7] P. Locke, On the asymptotic behavior of solutions of an nth-order nonlinear equation. Proc. Amer. Math. Soc. 18 (1967), 383-390. MR 35 #3167. MR 0212293 (35:3167)
- [8] -, Correction to a paper by Brauer and Wong, J. Differential Equations 9 (1971), 380. MR 42 #7987. MR 0273106 (42:7987)
- [9] M. Ráb, Les formules asymptotiques pour les solutions d'un système des équations différentielles, Arch. Math. (Brno) 1 (1965), 199-212. MR 33 #6026. MR 0197866 (33:6026)
- [10] W. F. Trench, On the asymptotic behavior of solutions of second order linear differential equations, Proc. Amer. Math. Soc. 14 (1963), 12-14. MR 26 #412. MR 0142844 (26:412)
- [11] P. Waltman, On the asymptotic behavior of solutions of a nonlinear equation, Proc. Amer. Math. Soc. 15 (1964), 918-923. MR 31 #445. MR 0176170 (31:445)
- [12] -, On the asymptotic behavior of solutions of an nth order equation, Monatsh. Math. 69 (1965), 427-430. MR 32 #2686. MR 0185217 (32:2686)
- [13] D. Willett, Asymptotic behavior of disconjugate nth order differential equations, Canad. J. Math. 23 (1971), 293-314. MR 0293196 (45:2275)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34D05
Retrieve articles in all journals with MSC: 34D05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1972-0301313-7
Keywords:
Asymptotic behavior,
perturbations
Article copyright:
© Copyright 1972
American Mathematical Society