Sums of Distances between Points on a Sphere

Kenneth B. Stolarsky

Abstract. An upper bound for the sum of the λth powers of all distances determined by N points on a unit sphere is given for $0 \leq \lambda \leq 1$.

Let p_1, \ldots, p_N be points on the unit sphere U^m of E^m, the m-dimensional Euclidean space. Let

$$S = S(N, m, \lambda) = \max \sum_{i<j} |p_i - p_j|^{\lambda}$$

where the maximum is taken over all possible p_1, \ldots, p_N. The function S has been studied in [1]-[5]. Let $\sigma(U^m)$ denote the surface area of U^m. Björck has shown in [3] that $S \leq c(m, \lambda)N^2$ where $c(m, \lambda) = \frac{1}{2}\sigma(U^m)^{-1} \int |p_0 - p|^{\lambda} \, d\sigma(p)$; here $\int \cdots \, d\sigma(p)$ denotes a surface integral over U^m and p_0 is an arbitrary point on U^m. For example, $c(3, 1) = \frac{2}{3}$. In [1] Alexander used Haar integrals to prove

$$S(N, 3, 1) \leq \frac{2}{3} N^2 - \frac{1}{2}.$$ \hspace{1cm} (1)

By the same technique we will show (see comment after Theorem 2) that for $0 \leq \lambda \leq 1$,

$$S(N, m, \lambda) \leq c(m, \lambda)N^2 - \frac{1}{2}c(m, \lambda)$$ \hspace{1cm} (2)

is true at least “half of the time”; more precisely, for any positive integer n the inequality (2) is true either for $N=n$ or for $N=n+1$. Our proof is based on a new generalization of the triangle inequality, Theorem 1, and an imbedding theorem of I. J. Schoenberg [6] or [7, p. 527]. Note that when $m=3$ and $\lambda=1$ our result is weaker than Alexander’s.

Lemma 1. Let $u \geq v + 2 \geq 3$ and let H denote the hexagonal region $0 \leq x \leq u$, $0 \leq y \leq v$, $1 \leq x+y \leq u+v-1$. Then for (x, y) in H we have

$$g(x, y) = \frac{x(u-x) + y(v-y)}{x(v-y) + y(u-x)} \leq \frac{u-1}{v}.$$
Proof. Let \(s \) denote the substitution which takes \(x \) and \(y \) to \(u-x \) and \(v-y \) respectively. The function \(g(x, y) \) is invariant under \(s \), so it suffices to prove the inequality for the three critical points \((\frac{1}{2}(u+v), \frac{1}{2}(u+v)) \), \((\frac{1}{2}(u+v), \frac{1}{2}(u+v)) \), \((\frac{1}{2}u, \frac{1}{2}v) \), and the three boundary lines \(x+y=1 \), \(y=0 \) and \(x=u \). The straightforward details are omitted.

Now let \(S_1 \) be a finite set of \(u \) points \(p_1, \ldots, p_u \) in \(E^m \) and similarly let \(S_2 \) be a set of \(v \) such points \(q_1, \ldots, q_v \). Let \(\sum_1 = \sum_{i<j} |p_i-p_j| \), \(\sum_2 = \sum_{i<j} |q_i-q_j| \), and \(\sum_{12} = \sum_{i,j} |p_i-q_j| \).

Theorem 1. Let \(u \geq v \). Define
\[
f(u, v) = \begin{cases} 1, & u = v, \\ (u-1)/v, & u > v. \end{cases}
\]
Then
\[
\sum_1 + \sum_2 \leq f(u, v) \sum_{12}.
\]
Moreover the constant \(f(u, v) \) is best possible.

Proof. For any two points \(p_1, p_2 \in E^m \),
\[
|p_1 - p_2| = a_m \int |p_1 \cdot p - p_2 \cdot p| \ d\sigma(p)
\]
where \(a_m \) depends only on the dimension \(m \). Hence it suffices to prove (3) in the case where the \(p_i \) and \(q_j \) are real numbers. Let \(J \) be any interval on the real axis which does not contain any point \(p_i \) or \(q_j \). Let \(x \) be the number of \(p_i \) to the left of \(J \) and \(y \) the number of \(q_j \) to the left of \(J \). It suffices to show
\[
L \leq f(u, v) R \text{ where } L \text{ is the number of times } J \text{ is counted on the left of (3)}
\]
and \(R \) is the number of times it is counted on the right, i.e. that
\[
x(u-x) + y(v-y) \leq f(u, v) (x(v-y) + y(u-x)).
\]
For \(v \leq u \leq v+1 \) this follows from \((x-y)(u-v) \leq (x-y)^2 \) and for \(v+2 \leq u \) it follows from Lemma 1. Equality holds in (3) if (not only if) \(p_2 = p_3 = \ldots = p_u = q_1 = \ldots = q_v \) and \(p_1 \) is arbitrary.

Theorem 2. For \(0 \leq \lambda \leq 1 \),
\[
S(u, m, \lambda) + S(v, m, \lambda) \leq 2c(m, \lambda) uvf(u, v).
\]

Proof. Fix \(\lambda \). Given any \(t \) points \(p_1, \ldots, p_t \) in \(E^m \), we can find an \(m' \geq m \) and \(t \) points \(p'_1, \ldots, p'_t \) in \(E^{m'} \) such that \(|p_i - p'_j| = |p_i - p_j|^2 \) for \(1 \leq i, j \leq t \). This result is due to I. J. Schoenberg [7, p. 527]. In the following \(\tau, \tau_1, \tau_2 \) shall denote elements of the special orthogonal group \(SO(m) \) acting on \(U^m \). The symbol \(\frac{1}{2} \cdots d\tau \) shall denote a Haar integral over that group; we normalize the measure so that \(\int_{SO(m)} d\tau = 1 \). Choose \(p_1, \ldots, p_u \).
and \(q_1, \ldots, q_v \) on \(U^m \) so that

\[
S(u, m, \lambda) = \sum_{i < j} |p_i - p_j|^2 \quad \text{and} \quad S(v, m, \lambda) = \sum_{i < j} |q_i - q_j|^2.
\]

Define

\[
I = \int \sum_{i, j} |p_i - \tau_1 q_j|^2 \, d\tau_1.
\]

Clearly

\[
I = uv \int |p - \tau_1 \cdot p|^2 \, d\tau_1 = uvo(U^m)^{-1} \int |p_0 - p|^2 \, d\sigma(p) = 2c(m, \lambda)uv
\]

On the other hand, for any \(p_0 \) on \(U^m' \),

\[
|p_i - \tau \cdot q_i|^2 = |p_i' - (\tau_1 q_i)'| = b_m' \int |(p_i' - (\tau_1 \cdot q_i))' \cdot \tau_2 p_0| \, d\tau_2
\]

where \(b_m' \) depends only on the dimension \(m' \). Hence by Theorem 1,

\[
I = \iint b_m' \sum_{i, j} |p_i' \cdot \tau_2 p_0 - (\tau_1 q_i)' \cdot \tau_2 p_0| \, d\tau_2 \, d\tau_1
\]

\[
\geq f^{-1} \iint \left(\sum_{i < j} b_m' |(p_i' - p_j') \cdot \tau_2 p_0| \right. \]

\[
\left. + \sum_{i < j} b_m' |(\tau_1 q_i)' - (\tau_1 q_j)' \cdot \tau_2 p_0| \right) \, d\tau_2 \, d\tau_1
\]

\[
= f^{-1} \int \left(\sum_{i < j} |p_i - p_j|^2 + \sum_{i < j} |q_i - q_j|^2 \right) \, d\tau_1.
\]

The result follows from (5), (6), and (7).

To obtain (2) set \(v = u - 1 \) in (4) and note that \(cu^2 - \frac{1}{2} c + c(u - 1)^2 - \frac{1}{2} c = 2cu(u - 1) \).

\section*{References}

1. R. Alexander, On the set of distances determined by \(n \) points on the 2-sphere (in preparation).