FILTER CHARACTERIZATIONS OF C- AND C*-EMBEDDINGS

JOHN WILLIAM GREEN

Abstract. A filter F on a space S is completely regular if the complement of each set in F is completely separated from some set in F. A characterization of the Stone-Cech compactification due to Alexandroff is used to establish the following theorem. Suppose K is a subspace of a Tychonoff space S. K is C*-embedded in S if and only if the trace on K of every maximal completely regular filter on S intersecting K is maximal completely regular on K. A similar characterization of the C-embedded subsets of a Tychonoff space is obtained as are several related results.

A characterization of the Stone-Cech compactification βS of a Tychonoff space S due essentially to Alexandroff [1] is used to characterize the C*-embedded subspaces of S. This result is used to obtain a second characterization of such subspaces as well as one of the C-embedded subspaces. A few related results are obtained.

Throughout this paper, K will refer to a subspace of a Tychonoff space S. The notion of a completely regular filter was introduced in [1] under the term "completely regular system" and referred to a certain type of what is now called a filtersubbase. The term used here, as well as the reduction to filters, apparently was introduced by Bourbaki. (See, for example, [4, Chapter IX, §1, exercises].) The characterization of βS given below may be found, at least implicitly, in [1], [3], [4], [5], [7] and, particularly, [9]. In [8], in several other papers, completely regular filters are used for distinct, though related, purposes. The reader is assumed to be familiar with the results in [4], as well as Chapter 6 of [6]. The terminology is that of these two sources, for the most part.

A filter F on S is completely regular if for each U in F, there exist V in F and ϕ in $L(S)$ (=the set of all functions in $C(S)$ with range a subset of $[0, 1]$) such that ϕ is 0 on V and 1 on $S - U$. It should be noted that every completely regular filter has as base an e-filter [6, problem 2L] and the filter (in the lattice of all subsets of S) generated by an e-filter is completely regular. If Y is the topology of S and for each $U \subseteq S$, $U^* = U \cup \{F : F$ is a

Presented to the Society, January 18, 1972; received by the editors October 21, 1971.

AMS 1970 subject classifications. Primary 54C45, 54D35.

Key words and phrases. Stone-Cech compactification, z-filter, completely regular filter, C*-embedding, C-embedding.
free maximal completely regular filter on \(S \) having \(U \) as an element\)}, then \(B = \{U^*: U \in Y\} \) is a base for a topology on \(S^* \) with respect to which \(S^* \) is (homeomorphic to) \(\beta\mathcal{S} \). If \(x \) is a point of a space \(T \), \(\text{Nbd}_T(x) \) is the neighborhood filter of \(x \) in the space \(T \). If \(F \) is a filter on \(S \), \(F \) is said to intersect \(K \) if each set in \(F \) intersects \(K \), and \(F_K \) and \(\text{Tr}_K(F) \) are used for the trace of \(F \) on \(K \). A filterbase \(G \) is coarser than a filterbase \(F \) (written \(G \subseteq F \) or \(F \preceq G \)) if each set in \(G \) contains a set in \(F \). If \(F \) and \(G \) are filters on a set \(T \), \(\text{sup}(F, G) = \{U \subseteq T: U \supseteq f \cap g \text{ for some } f \in F \text{ and } g \in G\} \) and is a filter on \(T \), provided each set in \(F \) intersects each set in \(G \).

Lemma. If \(F \) is a maximal completely regular filter on \(K \), there is a unique maximal completely regular filter on \(S \) coarser than \(F \). Furthermore, if \(F \) is any free completely regular filter on \(K \), there is a coarser completely regular filter on \(S \) whose trace on \(K \) is free.

Proof. Suppose \(F \) is a free completely regular filter on \(K \) (relative to the subspace topology). Let \(G = \{S - \text{Cl}_x f: f \in F\} \). \(G \) is an \(S \)-open cover of \(K \) no finite subcollection of which covers \(K \). For each \(x \in K \), let \(U_x \) denote some open set in \(G \) containing \(x \) and \(\Phi_x = \{\phi \in L(S): \phi(x) = 1 \text{ and } \phi(S - U_x) = 0\} \). For each finite collection \(H \) of ordered pairs \((x, \phi)\) such that \(x \in K \) and \(\phi \in \Phi_x \), let \(\phi_H(t) = \text{sup}\{\phi(t): (x, \phi) \in H\} \), for each \(t \in S \). \(\phi_H \in L(S) \) and if \(0 < e < 1 \), then (1) \(\phi_H^0[0, e) \supseteq K \), for if \((x, \phi) \in H \), then \(\phi(x) = 1 \); and (2) \(\phi_H^1[0, e] \cap K \neq \emptyset \), for otherwise, \(K \subseteq \phi_H^0[0, 1] \subseteq \phi_H^1[0, 1] \subseteq \cup \{\phi^{-1}(0, 1): (x, \phi) \in H\} \subseteq \cup \{U_x: (x, \phi) \in H\} \), contrary to the fact that no finite subcollection of \(G \) covers \(K \). It follows that the filter \(F' \) on \(S \) with base \(\{\phi_H^1[0, e): 0 < e < 1, H \text{ is a finite collection of ordered pairs } (x, \phi) \text{ such that } x \in K \text{ and } \phi \in \Phi_x\} \) is completely regular on \(S \). It will be shown that \(F' \preceq F \). Suppose \(f' \in F' \). For some \(H = \{(x_n, \phi_n): n \leq p, x_n \in K, \phi_n \in \Phi_{x_n}\} \) and \(0 < e < 1 \), \(f' \supseteq \phi_H^1[0, e) \). For each \(n \), \(\phi_n \) is \(1 \) at \(x_n \) and for some \(f_n \in F \), is \(0 \) on \(S - (S - \text{Cl}_x f_n) = \text{Cl}_x f_n \supseteq f_n \). \(\bigcap_{n \leq p} f_n = f \in F \). Thus, \(\phi_n (f) = 0 \) for each \(n \leq p \), so \(\phi_H (f) = 0 \). \(f' \supseteq \phi_H^0[0, e) \). Therefore, \(F' \preceq F \).

Therefore, every free completely regular filter on \(K \) is finer than some (not necessarily free) completely regular filter on \(S \) whose trace on \(K \) is free. A simple application of Zorn's lemma establishes the existence of a filter \(F' \) maximal with respect to the property of being a completely regular filter on \(S \) coarser than \(F \). \(F' \) is a maximal completely regular filter on \(S \) if \(F \) is on \(K \). For suppose there is a completely regular filter \(G \) on \(S \) strictly finer than \(F' \). \(G \preceq F \). \(\text{sup}(G_x, F) \) does not exist (as a filter), for if it does, it is a completely regular filter on \(K \) strictly finer than the maximal completely regular filter \(F \) on \(K \). It follows that there exist \(g \in G \) and \(f \in F \) such that \(\text{Cl}_x g \cap \text{Cl}_y f = \emptyset \). There exist \(g_1 \) in \(G \) and \(\phi \) in \(L(S) \).
such that \(\phi(g) = 1 \) and \(\phi(S - g) = 0 \). Let \(F'' = \sup\{F', \{\phi^{-1}[0, e): 0 < e < 1\}\} \). \(F'' \) is a completely regular filter on \(S \) strictly finer than \(F' \) and coarser than \(F \). This is contrary to the definition of \(F' \). Therefore, \(F'' \) is a maximal completely regular filter on \(S \). It is easily established that \(F'' \) is unique. If \(F \) is a fixed maximal completely regular filter on \(K \), then for some point \(x \) of \(K \), \(F = \text{Nbd}_K(x) = \text{Tr}_K(\text{Nbd}_S(x)) \).

Theorem 1. In order that \(K \) be \(C^* \)-embedded in \(S \), it is necessary and sufficient that the trace on \(K \) of every maximal completely regular filter on \(S \) intersecting \(K \) be maximal completely regular on \(K \).

Proof. The condition is sufficient. For suppose \(F \) is maximal completely regular on \(K \) and \(F' \) is the unique maximal completely regular filter on \(S \) coarser than \(F \). It is easily seen that \(F = F_K \). Let \(K' = K \cup \{F: F \text{ is a maximal completely regular filter on } S \text{ and } F_K \text{ is free}\} \). If \(F \in K' - K \) and is fixed, \(F \) is the neighborhood system in \(S \) of some point of \(S - K \) with which it will be identified. If \(F \in K' - K \) and is free, then \(F \) is a point in \(\beta S - S \) and \(\{f^* : f \in F\} \) is a base for the neighborhood filter in \(\beta S \) of the point \(F \). It is easily established that \(K' = \text{Cl}_{\beta S} K \) and hence is compact. Let \(\phi: K' \to \beta K \) such that \(\phi(x) = x \) if \(x \in K \), \(\phi(x) = \text{Tr}_K(\text{Nbd}_S(x)) \) if \(x \in K' \cap (S - K) \) and \(\phi(x) = x_K \) if \(x \in K' - S \). It is established above that \(\phi \) is a bijection.

Suppose \(x \in K' \) and \(U \) is a \(\beta K \)-open set containing \(\phi(x) \).

Case 1. Suppose \(x \in K \). There exists an \(S \)-open set \(D \) containing \(x \) such that \(D^*(K) = D \cap K \cup \{F : F \text{ is a free maximal completely regular filter on } K \text{ having } D \cap K \text{ as an element}\} \subseteq U \), \(\phi(D^* \cap K) \subseteq D^*(K) \). For suppose \(t \in D^* \cap K' \). \(\phi(t) = t \in D^*(K) \). Suppose \(t \in (D - K) \cap K' \) and \(F = \text{Nbd}_S(t) \). \(\phi(t) = F_K \) and since \(F \in D^* \), \(F_K \in D^*(K) \). Suppose \(t \in D^* \cap (K' - S) \). \(\phi(t) = t_K \) and since \(D \subseteq t \), \(D \cap K \subseteq t_K \). Thus, \(\phi(D^* \cap K') \subseteq D^*(K) \subseteq U \) and \(x \in D^* \cap K' \).

Case 2. Suppose \(x \in (K' - K) \cap S \). Let \(F = \text{Nbd}_S(x) \), \(\phi(x) = F_K \). There exists \(f \) in \(F \) such that \(f^*(K) \subseteq U \), \(F_K \in f^*(K) \) and \(F \in f^* \). That \(\phi(f^* \cap K') \subseteq f^*(K) \subseteq U \) is established much as in Case 1.

Case 3. Suppose \(x \in K' - S \). \(\phi(x) = x_K \). There exists \(f \in x \) such that \(f^*(K) \subseteq U \). As in Case 2, \(\phi(f^* \cap K') \subseteq f^*(K) \subseteq U \). Therefore, \(\phi \) is continuous. A direct proof that \(\phi^{-1} \) is continuous is not as simple, but homeomorphism is already established without that. So, \(\beta K \subseteq \beta S \) and \(K \) is \(C^* \)-embedded in \(S \).

The condition is necessary. For in this case, \(\beta K \subseteq \beta S \). If \(F \) is a maximal completely regular filter on \(S \) fixed at a point \(x \) of \(K \), then \(F = \text{Nbd}_S(x) \) and \(F_K = \text{Nbd}_K(x) \), which is maximal completely regular on \(K \). Suppose \(F \) is a maximal completely regular filter on \(S \) intersecting \(K \) such that \(F_K \) is free. There is a maximal completely regular filter on \(K \) finer than the
completely regular filter F_K. Suppose there are two, G_1 and G_2. G_1 and G_2 converge to distinct points of βK. Hence, F accumulates at two points of βS, which is impossible. Let F' denote the unique maximal completely regular filter on K finer than F_K. Suppose $F' \neq F_K$. Then there is a set f' in F', open in K, and containing no set in F_K. Thus, for every closed g in F, $g \cap K - f'$ is a nonempty set closed in K. Since βK is compact, $\bigcap \{ \text{Cl}_K g \cap K - f' : g = \text{Cl}_S g \in F \}$ contains a point, P, which is a βS-accumulation point of F but not of F'. F' converges in βK to $F' \neq P$. It follows that F accumulates at the two points P and F', which is impossible. Therefore, $F_K = F'$.

Corollary. If K is a discrete subspace of S, then K is C^*-embedded in S if and only if the trace on K of every maximal completely regular filter on S intersecting K is an ultrafilter on K.

Theorem 2. In order that K be C^*-embedded in S, it is necessary and sufficient that every maximal completely regular filter on K be the trace on K of a maximal completely regular filter on S.

Proof. The condition is sufficient. For suppose F is a maximal completely regular filter on S intersecting K. F_K is completely regular on K, so there exists a maximal completely regular filter G on S such that G_K is finer than F_K and is maximal completely regular. Since G_K and F_K are compatible, so are F and G; and since F and G are maximal, $F = G$. Thus, F_K is maximal completely regular and the stated result follows from Theorem 1.

The necessity of the condition follows easily from Theorem 1 and the lemma.

Theorem 3. If K is C^*-embedded in S, the trace on K of every z-ultrafilter on S intersecting K is a z-ultrafilter on K.

Proof. Suppose J is a z-ultrafilter on S intersecting K. Let F denote the unique maximal completely regular filter on S coarser than J. $F_K \leq J_K$ and by Theorem 1 is maximal completely regular on K. There is a unique z-ultrafilter Q on K finer than F_K. Suppose there exist U in J_K and V in Q such that $U \cap V = \emptyset$. Then there exists $\phi \in L(K)$ such that $\phi^{-1}(0) = U$ and $\phi^{-1}(1) = V$. ϕ has a continuous extension ϕ_1 in $L(S)$. $\phi_1^{-1}[0, 1) \in F$ since each set in F intersects $\phi_1^{-1}[0, 1)$. Thus, the subset U of $\phi_1^{-1}(1)$ fails to intersect some set in F_K and yet $J_K \supseteq F_K$. This is a contradiction. Thus, each set in Q intersects each set in J_K. Since Q is a z-ultrafilter on K, $Q \supseteq J_K$. Suppose $V \in Q$. There exists ϕ in $L(K)$ such that $\phi^{-1}(0) = V$. ϕ has a continuous extension ϕ_1 in $L(S)$. Since V intersects every set in J_K, $\phi_1^{-1}(0)$ intersects every set in J and thus belongs to J. Hence, $\phi_1^{-1}(0) \cap K = V \in J_K$. It follows that $Q = J_K$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The converse of the above theorem is false, even if the closure in \(S \) of every zero set in \(K \) is a zero set in \(S \). In this regard, Lemma 3 of [2] may be of interest, where the normal base is the collection of all zero sets.

Example. Let \(S = [0, 1] \), \(K = [0, 1) \) with the usual topologies. Obviously, \(K \) is not \(C^* \)-embedded in \(S \). The only \(z \)-ultrafilters on \(S \) intersecting \(K \) are those fixed at a point of \(K \). If \(Z \) is a zero set in \(K \), then \(\text{Cl}_S Z \) is a zero set in \(S \) since it is closed and \(S \) is metric.

Theorem 4. In order that \(K \) be \(C \)-embedded in \(S \), it is necessary and sufficient that every \(z \)-ultrafilter on \(K \) be the trace of a \(z \)-ultrafilter on \(S \).

Proof. The condition is necessary. For by Theorems 1 and 3, \(\beta K \subseteq \beta S \), and the trace on \(K \) of every \(z \)-ultrafilter on \(S \) intersecting \(K \) is a \(z \)-ultrafilter on \(K \). Suppose \(F \) is a \(z \)-ultrafilter on \(K \). Let \(G \) denote the unique maximal completely regular filter on \(S \) coarser than \(F \), so that \(G \) is the unique maximal completely regular filter on \(K \) coarser than \(F \). Let \(J \) denote the unique \(z \)-ultrafilter on \(S \) finer than \(G \). Suppose some set \(U \) in \(J \) does not intersect \(K \). Since \(K \) is \(C \)-embedded in \(S \), there exists \(g \) in \(L(S) \) such that \(g^{-1}(0) \subseteq K \) and \(g^{-1}(1) \supseteq U \). For each \(e \) in \((0, 1) \), \(g^{-1}[0, e) \in \mathcal{G} \) and hence, \(J \supseteq G \). This is a contradiction. Thus, \(J \) intersects \(K \) and \(J_K \) is a \(z \)-ultrafilter on \(K \). Since \(J \supseteq G \), \(J_K \supseteq G_K \). There is only one \(z \)-ultrafilter on \(K \) finer than \(G_K \). Hence, \(J_K = F \).

The condition is sufficient. It will first be shown that \(K \) is \(C^* \)-embedded in \(S \). It follows easily from the hypothesis that the trace on \(K \) of every \(z \)-ultrafilter on \(S \) intersecting \(K \) is a \(z \)-ultrafilter on \(K \). Suppose \(F \) is a \(z \)-ultrafilter on \(S \) finer than \(K \). Let \(G \) denote the unique maximal completely regular filter on \(S \) coarser than \(F \). Let \(J \) denote the unique \(z \)-ultrafilter on \(S \) finer than \(G \). Suppose some set \(U \) in \(J \) does not intersect \(K \). Since \(K \) is \(C \)-embedded in \(S \), there exists \(g \) in \(L(S) \) such that \(g^{-1}(0) \subseteq K \) and \(g^{-1}(1) \supseteq U \). For each \(e \) in \((0, 1) \), \(g^{-1}[0, e) \in \mathcal{G} \) and hence, \(J \supseteq G \). This is a contradiction. Thus, \(J \) intersects \(K \) and \(J_K \) is a \(z \)-ultrafilter on \(K \). Since \(J \supseteq G \), \(J_K \supseteq G_K \). There is only one \(z \)-ultrafilter on \(K \) finer than \(G_K \). Hence, \(J_K = F \).
Suppose K is not C-embedded in S. From Theorem 1.18 of [6], it follows that there is a zero set Z in S not intersecting K such that if $g \in C^*(S)$ and $g^{-1}(0) = Z$, then for each $e > 0$, $g^{-1}[0, e] \cap K \neq \emptyset$. Let $F_1 = \{g^{-1}[0, e] \cap K : 0 < e, g \in C^*(S) \text{ and } g^{-1}(0) = Z\}$. F_1 is a base for a z-filter on K. Hence, there is a z-ultrafilter F on K finer than F_1. F is the trace on K of some z-ultrafilter J on S, by hypothesis. $Z \notin J$, since $Z \cap K = \emptyset$, so there exists $V \in J$ such that $V \cap Z = \emptyset$. Since Z and V are zero sets in S, there exists g in $L(S)$ such that $g^{-1}(0) = Z$ and $g^{-1}(1) = V$. But if $0 < e < 1$, $g^{-1}[0, e] \cap K \in F \subseteq J_K$ and thus, $g^{-1}[0, e] \cap V \neq \emptyset$. This is a contradiction. Therefore, K is C-embedded in S.

A minor modification of the argument in the last paragraph above establishes the following.

Theorem 5. If K is C^*-embedded in S and every z-ultrafilter on K is finer than some z-ultrafilter on S, then K is C-embedded in S.

The following summary of Theorems 2 and 4 was suggested by the referee. It should be noted, however, that while the trace of a completely regular filter on S on an arbitrary subset K is completely regular on K, the same is not true of e-filters without some restriction on K.

Theorem 6. K is C- [C^*-] embedded in S if and only if every z- [e-] ultrafilter on K is the trace of a z- [e-] ultrafilter on S.

Theorem 7. If K is countable, then K is C-embedded in S if and only if K is completely separated from every zero set in S not intersecting K.

Proof. Suppose K is completely separated from every zero set in S not intersecting K. It follows from 3B.1 of [6] that K is closed and completely separated from every closed set not intersecting S. Suppose K_1 and K_2 are subsets of K completely separated in K. There exists ϕ in $L(K)$ such that $\phi(K_1) = 0$ and $\phi(K_2) = 1$. Since K is countable, there exists $0 < r < 1$ such that $\phi^{-1}(r) \cap K = \emptyset$. It follows that $K_1 = K \cap \phi^{-1}(0, r]$ and $K_2 = K \cap \phi^{-1}[r, 1)$ are completely separated in K, contain K_1 and K_2, respectively, and $K = K_1 \cup K_2$.

Every closed subset of K is the intersection of K and a zero in S. For suppose H is a closed subset of K. For each x in $K - H$, there is a zero set Z_x in S containing H but not containing x. $\bigcap Z_x$ is the intersection of countably many zero sets in S and thus is a zero set whose intersection with K is H.

Thus, there exist zero sets Z_1 and Z_2 in S such that $Z_1 \cap K = K_1$ and $Z_2 \cap K = K_2$. $Z_1 \cap Z_2$ is a zero set not intersecting K and so, by hypothesis, there is a zero set Z in S containing K and not intersecting $Z_1 \cap Z_2$. $Z \cap Z_1$ and $Z \cap Z_2$ are mutually exclusive zero sets in S containing K_1 and K_2.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
K_2, respectively. Hence, each two sets completely separated in K are completely separated in S. By Urysohn’s extension theorem, K is C^*-embedded in S. It follows from Theorem 1.18 of [6] that K is C-embedded in S. That the converse is true is obvious.

Thus, statements 1 and 3 of problem 3L.4 of [6] remain equivalent even if the requirement that D be discrete is omitted.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73069