Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integrably parallelizable manifolds


Author: Vagn Lundsgaard Hansen
Journal: Proc. Amer. Math. Soc. 35 (1972), 543-546
MSC: Primary 53C10; Secondary 57D15
DOI: https://doi.org/10.1090/S0002-9939-1972-0305296-5
MathSciNet review: 0305296
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A smooth manifold $ {M^n}$ is called integrably parallelizable if there exists an atlas for the smooth structure on $ {M^n}$ such that all differentials in overlap between charts are equal to the identity map of the model for $ {M^n}$. We show that the class of connected, integrably parallelizable, n-dimensional smooth manifolds consists precisely of the open parallelizable manifolds and manifolds diffeomorphic to the n-torus.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel and F. Hirzebruch, Characteristics classes and homogeneous spaces. III, Amer. J. Math. 82 (1960), 491-504. MR 22 #11413. MR 0120664 (22:11413)
  • [2] J. Eells and K. D. Elworthy, Open embeddings of certain Banach manifolds, Ann. of Math. (2) 91 (1970), 465-485. MR 41 #7725. MR 0263120 (41:7725)
  • [3] A. Haefliger, Lectures on the theorem of Gromov, Proc. Liverpool Singularities Sympos. II, Lecture Notes in Math., no. 209, Springer-Verlag, Berlin and New York, 1971, pp. 128-141. MR 0334241 (48:12560)
  • [4] N. J. Hicks, Notes on differential geometry, Van Nostrand Math. Studies, no. 3, Van Nostrand, Princeton, N.J., 1965, MR 31 #3936. MR 0179691 (31:3936)
  • [5] M. W. Hirsch, On imbedding differentiable manifolds in euclidean space, Ann. of Math. (2) 73 (1961), 566-571. MR 23 #A2223. MR 0124915 (23:A2223)
  • [6] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30. MR 31 #4034. MR 0179792 (31:4034)
  • [7] H. Rosenberg, Actions of $ {R^n}$ on manifolds, Comment. Math. Helv. 41 (1966/67), 170-178. MR 34 #6794. MR 0206978 (34:6794)
  • [8] T. J. Willmore, Connections for systems of parallel distributions, Quart. J. Math. Oxford Ser. (2) 7 (1956), 269-216. MR 20 #4299. MR 0097832 (20:4299)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C10, 57D15

Retrieve articles in all journals with MSC: 53C10, 57D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0305296-5
Keywords: Tangent bundle, reduction of structural group, integrable reduction, parallelizable manifold, rank of a manifold
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society