A NOTE ON JANKO’S SIMPLE GROUP
OF ORDER 175,560

E. SHULT

Abstract. Janko’s simple group J of order 175,560 is characterized among simple groups by the weak closure W of the involution in its centralizer. Among arbitrary finite groups, the theorem asserts that the normal closure of W is J.

1. Introduction. The existence of a simple group J of order 175,560 was established by Professor Z. Janko in [6]. Indeed, Janko proved that the group J was characterized by the presence of an involution t such that
(a) t lies in the center of a 2-Sylow subgroup of G,
(b) C_G(t) ∼ ⟨t⟩ × A_5,
(c) t is not central in G.

In this paper we prove the following:

Theorem. Let t be an involution in a group G. Assume (i) t lies in the center of a 2-Sylow subgroup of G and (ii) the weak closure of t in its centralizer in G has the form ⟨t⟩ × A_5. Then ⟨t^G⟩ is isomorphic to Janko’s simple group of order 175,560.

This "weak closure" version of a centralizer-characterization for J plays a key role in the study (being carried out by Professor M. Herzog and the author) of groups whose proper central 2-Sylow intersections are cyclic or generalized quaternion groups.

2. Proof of the theorem. The proof proceeds by a series of short steps. Let G be a minimal counterexample.

(1) t lies in no proper normal subgroup of G of 2-power index.
Assume t ∈ N ≤ G where G/N is a 2-group. Since by (i) |t^G| is odd, N transitively permutes the elements of t^G so

\[t^G = t^N. \]

Since all conjugates of t lie in N, the weak closure of t in C_G(t) relative to G is also the weak closure of t in C_N(t) relative to N. Thus (i) and (ii)
hold with N in place of G. If $|N| < |G|$, we may imply induction on $|N|$ to obtain

$$\langle t^G \rangle = \langle t^N \rangle \simeq J,$$

where J denotes Janko's group. Since this presents us with the conclusion of the lemma, we may assume $|N| = |G|$. This allows us to assume (1).

(2) Set $W_t = \langle g^{-1}tg | g^{-1}tg \in C_G(t), g \in G \rangle$, the weak closure of t in $C_G(t)$. Let T be a fixed 2-Sylow subgroup of W_t. Then, by (ii), T is elementary of order 8. T is weakly closed in any 2-Sylow subgroup which contains T. Also $N(T)$ controls fusion in T.

Let S be a 2-Sylow subgroup of $C(t)$. Then $S \cap W_t$ is a 2-Sylow subgroup of W_t and so without loss of generality we may assume that $S \cap W_t = T$. Since W_t is generated by conjugates of t there exist a conjugate of t, say $t^g \in W_t - \langle t \rangle$. Then, by conjugating by elements in W_t we may assume $t^g \in T$. Then, by conjugating by elements in $N_{W_t}(T)$ we see that conjugates of t generate T, whence

$$(2.1) \quad S \cap W_t = T = \langle t^G \cap S \rangle.$$

Thus T is the weak closure of t in S relative to G. This forces T to be weakly closed in S—i.e., T is the unique conjugate of T lying in S. It follows that any 2-Sylow subgroup of G contains only one conjugate of T. Thus T is weakly closed in any 2-Sylow subgroup containing it. It follows from Sylow’s theorem that T is weakly closed in any 2-subgroup of G containing T.

If a and a^g both lie in T, then T and $T^{g^{-1}}$ lie in $C(a)$. Then there exists an element $c \in C(a)$ such that $T^{g^{-1}c}$ and T lie in a common 2-Sylow subgroup of $C(a)$. From the last line of the previous paragraph $T^{g^{-1}c} = T$. Thus $g^{-1}c \in N(T)$ and so $c^{-1}g \in N(T)$. Then $a^{c^{-1}g} = a^g$ and so the fusion $a \rightarrow a^g$ can be achieved in $N(T)$.

All assertions in (2) have been proved.

(3) T^g is fused in G (and in $N(T)$).

Since S is a 2-Sylow subgroup of $N(T)$ and fusion in T occurs in $N(T)$ we have $|t^G \cap T|$ is odd. Now in $W_t \cap N_G(T)$, there exists an element of order 3 normalizing T, and stabilizing and acting fixed point free on a subgroup of T complementing $\langle t \rangle$. Indeed, $W_t \cap N_G(T)$ acts on T with orbits of lengths 1, 3 and 3, and t belongs to the orbit of length one. Since T is the weak closure of t in S, $t^G \cap S = t^G \cap T$ is a union of the $W_t \cap N_G(T)$-orbits mentioned above, has an odd number of elements and contains more than one element. It follows that $t^G \cap T = T^g$ and (3) is proved.

(4) T lies in the center of every 2-Sylow subgroup containing it.

Since $[W_t, W_t] \simeq A_5$ is a normal subgroup of $C(t)$, we see that $C(t) \cap N(T)$ contains $[W_t, W_t] \cap N(T) \simeq A_4$ as a normal subgroup. Thus
$N(T)/C(T)$ is isomorphic to a subgroup of $SL(3, 2)$ which is (a) transitive on the seven elements of $T^#$ and (b) in which the subgroup $(N(T) \cap C(t))/C(T)$ fixing one of the elements of T, lies in the normalizer of

$$\{[W_t, W_t] \cap N(T)C(T) | C(T) \cong Z_3\},$$

corresponding to a 3-Sylow subgroup of $SL(3, 2)$. It follows that $[N(T):C(T)]=21$ or 42. Because the 7-Sylow normalizers of $SL(3, 2)$ are maximal in $SL(3, 2)$ we see that $N(T)/C(T)$ is the nonabelian group of order 21. Thus a 2-Sylow subgroup of G lying in $N(T)$ lies in $C(T)$. Since T is weakly closed in any 2-Sylow subgroup of G containing it, it follows that T lies in the center of every 2-Sylow subgroup containing it.

(5) Let $G = G(t^G)$ be the graph whose vertices are t^G, and whose arcs are commuting pairs of involutions in t^G. Let G_t denote the connected component of G containing t. Every element of odd order in $C(T)$ fixes G_t pointwise.

Let u denote an element of odd order in $C(T)$. Since A_S admits no automorphism of odd order fixing pointwise one of its 2-Sylow subgroups, we see that for each $S \in T^#$, u normalizes $W_s = \text{Vec}_T(s, C_G(s)) \cong \langle s \rangle \times A_S$ and hence centralizes each W_s. What this means is that if $T^s \cap T$ is non-trivial then y also centralizes T^s. Since every commuting pair of involutions in t^G lies in a conjugate of T, we have that y centralizes every involution belonging to G_t.

(6) $O_{2^c}(G) = 1$.

It is easy to see that hypotheses (i) and (ii) inherit to $G/O_{2^c}(G)$. By induction, if $O_{2^c}(G) \neq 1$, $\langle t^G/O_{2^c}(G) \rangle \preceq J$. If $U = [C(t) \cap O_{2^c}(G), T]$, then U is a subgroup of W_t having odd orders and is normalized by T, a 2-Sylow subgroup of W_t. From the isomorphism type of W_t, $U = 1$. Then (using (3)), $C(t_1) \cap O_{2^c}(G) = C(T) \cap O_{2^c}(G)$ for all involutions t_1 in $T^#$. Since T is noncyclic, $(C(t_1) \cap O_{2^c}(G)) | t_1 \in T^# = O_{2^c}(G)$ and so the previous sentence implies $O_{2^c}(G) \leq C(T)$. Thus $O_{2^c}(G)$ is centralized by $\langle t^G \rangle$. It follows that $\langle t^G \rangle$ is a perfect central extension of J by a central group Z of odd order. But since every odd Sylow subgroup of J is cyclic and has a fixed-point-free element normalizing it, J has no multipliers of odd order. Thus $\langle t^G \rangle$ splits over Z. But since it is generated by involutions and $|Z|$ is odd, it follows that $\langle t^G \rangle \cong J$, our desired conclusion. Thus we may assume $O_{2^c}(G) = 1$.

(7) Any two elements of 2-power order in $N(T)$ which are conjugate in G are conjugate in $N(T)$.

Suppose x and $g^{-1}xg = x^g$ are two elements of 2-power order in $N(T)$. By (4), x and x^g lie in $C(T)$. Then T and T^g lie in $C(x)$ and so $T^{g^{-1}c}$ and T lie in a common 2-Sylow subgroup of $C(x)$ for an appropriate choice of c. Since by (2), T is weakly closed in any 2-group containing it,
1972] JANKO'S SIMPLE GROUP OF ORDER 175,560

$T^g = T$ so $g^{-1}c \in N(T)$. Then $c^{-1}g \in N(T)$ and $x^g = x^{g^{-1}}$ is conjugate to x by an element in $N(T)$.

(8) \mathcal{C} is not connected.

Suppose by way of contradiction that \mathcal{C} is connected, so that $\mathcal{C} = \mathcal{C}_1$. Let K be the centralizer in G of t^G, so

$$K = \bigcap C(s), \quad s \text{ ranging over } t^G .$$

Our first objective will be to show that K is trivial.

Set $K_0 = K \cap \langle t^G \rangle$. Then K_0 coincides with center of $\langle t^G \rangle$ and has 2-power order since $Z(\langle t^G \rangle)$ is necessarily a 2-group by (6).

Suppose g is an element in G such that conjugation by g leaves the coset tK_0 fixed. Then $t^g = tk$ where $k \in K_0$. Since $[t, k] = 1$ and t^g is an involution, either $k = 1$ or k is an involution. In any event $k \in T$ since by (2) and (3), T is the weak closure of $\langle t \rangle$ in S where S is any 2-Sylow subgroup of G containing T. Assume $k \neq 1$. Again by (3), T^g is fused so $k \in tG$. Then k is a member of tG commuting with all other members of tG. Since G acts transitively on t^G, this means that all members of tG are mutually commuting. Then $\langle t^G \rangle$ is elementary abelian. But then, on the other hand,

$$\langle t^G \rangle = \langle g^{-1}tg \mid g \in G, \ g^{-1}tg \in C_1(t) \rangle = W_t \cong Z_2 \times A_5,$$

a contradiction. Thus $k = 1$. Indeed, we have proved two things:

(2.2) \[t^G \bigcap K_0 = \emptyset, \]

(2.4) \[C_{t^G/K_0}(tK_0) = C_{t^G/K_0}. \]

Because of (2.3) and (2.4), hypotheses (i) and (ii) hold for G/K_0. Thus if $K_0 \neq 1$, induction on G/K_0 yields the fact that $\langle t^G \rangle$ is a perfect central extension of J by K_0. But then J has a perfect central extension by $K_0/K_0 \cong Z_2$. But in that case, TK_0/K_0 is a 2-Sylow subgroup of $\langle t^G \rangle/K_0 \cong J$, and TK_0/K_0 is elementary of order 8 and admits an automorphism of order 7. It follows that every coset of $K_0/K_0 \cong Z_2$ in TK_0/K_0 consists entirely of involutions. Thus TK_0/K_0 is elementary and so the 2-Sylow subgroups of $\langle t^G \rangle/K_0$ split over K_0/K_0. By a well-known theorem of Gaschütz [2] this implies that $\langle t^G \rangle/K_0$ splits over K_0/K_0, contrary to the fact that $\langle t^G \rangle/K_0$ is a perfect group. Thus we must assume

(2.5) \[K_0 = 1. \]

Thus

(2.6) \[\text{the centralizer of } tK/K \text{ in } G/K \text{ is covered by } C(t). \]

Also

(2.7) \[t^G \bigcap K \text{ is empty} . \]
is an immediate consequence of (2.3). Now by (2.6) and (2.7), hypotheses (i) and (ii) hold for G/K. Then if $K \neq 1$, induction yields that $\langle t^G \rangle K/K \cong J$ and so $\langle t^G \rangle$ is a central extension of J by $K \cap \langle t^G \rangle$. But now (2.5) implies $\langle t^G \rangle \cong J$, our conclusion. Thus we must assume

$$K = 1.$$

(2.8)

Now by (5), (2.8) implies that $C(T)$ is a 2-Sylow subgroup of G. Then $N(T) = SB$ where B is metacyclic of order 21. Let B_1 denote a 3-Sylow subgroup of B. Then B_1 is a 3-Sylow subgroup of $W_t \cap N(T) \cong Z_2 \times A_5$ for some involution s in T^e. Then since $S \leq N(W_s)$, $[S, B_1] \leq BT$. Since B is generated by its 3-Sylow subgroups $[S, B] \leq BT$, also. Since B normalizes $C(T) = S$, we have $[S, B] \leq BT \cap S = T$. Since B and S have coprime orders, $C_S(BT) = S$. Now B acts without fixed points on T so $C_S(BT) \cap BT \leq C_S(B) \cap (BT \cap S) = C_S(B) \cap T = \langle 1 \rangle$. Since T is central in S, $C_S(B) = C_S(BT)$. Thus we have

$$C_S(BT) \times BT = N(T).$$

(2.9)

Suppose $C_S(BT) \neq 1$. Then $N(T)$ has a nontrivial 2-factor whose associated kernel contains t. Since $N(T)$ controls its fusion of 2-elements by (7), the focal subgroup of S is proper in S and contains t. It follows from the focal subgroup theorem [5] (see Theorems 3.4 and 3.5 of [4]) that G contains a proper normal subgroup N of 2-power index and N contains t. But this contradicts step (1). Thus $C_S(BT) = 1$ and we now have

$$N(T) = BT, \quad T \text{ is a 2-Sylow subgroup of } G.$$

A Frattini argument now yields $C(t) = (N(T) \cap C(t))W_t$. But $N(T) \cap C(t)$ has the form TB_1 where B_1 is an appropriate 3-Sylow subgroup of B, and $TB_1 \leq W_t$. Thus

$$C(t) = W_t \cong Z_2 \times A_5.$$

(2.11)

That $\langle t^G \rangle \cong J$ follows from (2.11) and (i) is a theorem of Janko [6]. Thus, on the assumption that G is connected we reach our desired conclusion. Thus we may assume that G is not connected, which is (8).

(9) Let H_1 be the stabilizer in G of the set C_1. Then H_1 is a proper subgroup of G and has the form $H_1 \cong Y \times J$, where $t^G \cap H_1 \leq J$. The centralizer (in G) of any involution in $Y \cap J$ lies in H_1.

Clearly for any $t_1 \in C_1$, $C(t_1) \leq H_1$. By (4), H_1 satisfies hypotheses (i) and (ii). Since G is not connected by (8) and G is transitive on the vertices of C_1 (since these are t^G), it follows that H_1 is a proper subgroup of G. Then induction on $|H_1|$ yields $\langle t^H \rangle \cong J$. Since $t^g \in C_1$ implies $g \in H_1$ (since the connected components C_1, ··· form a system of imprimitivity on C_1), we have

$$t^G \cap H_1 = t^H_1.$$

(2.12)
Now $<t^{H_1}>$ is a normal subgroup of H_1 isomorphic to J. Since J is a complete and simple group,

$$H_1 = C_{H_1}(<t^{H_1}> \times <t^{H_1}> \simeq Y \times J$$

where $Y \simeq C_{H_1}(<t^{H_1}>)$.

Since an involution in J belongs to \mathcal{C}_1, we have already seen that the centralizer of any involution in J lies in H_1.

Now let x be an involution in J. Suppose, for some $g \in G$, $t^x = t^u$ where $u \in Y$. By (2.12), $u \in t^G \cap H_1 = t^{H_1}J \subseteq J$. Then $u \in Y \cap J = \{1\}$. Since $t^G \cap Y = \emptyset$ this means that for any element $w \in Y$, $C_G(w)$ contains W_t and $C_G(w)/<w>$ satisfies hypotheses (i) and (ii). In particular, induction yields $<t^{C_t(x)}>/(<x>/Xt) \simeq J$. But since $<t^{H_1}>$ lies in $C(x)$ and is isomorphic to J, it follows that $<t^{C_t(x)}> \leq H_1$. Thus $C(x)$ stabilizes $t^{C_t(x)} = t^{H_1} = \mathcal{C}_1$, whence $C(x) \leq H_1$.

(10) Any involution $y \in H_1 - (Y \cup J)$ satisfies $C(y) \leq H_1$.

Let y be an involution in $H_1 - (Y \cup J)$ so $y = y_1 y_2$ where y_1 is an involution in Y and y_2 is an involution in J. Then $\mathcal{C}_1 \cap C(y)$ consists of 31 involutions distributed in W_{t_2}-orbits of lengths 1, 15 and 15 with representatives $t_1 = y_2$, t_2 and t_3, respectively. We see that $\mathcal{C}_1 \cap C(y) \simeq Z_2 \times A_5$ and without loss of generality we may assume t_2 lies in the A_5-part—i.e. $t_2 \in [W_{t_1}, W_{t_2}]$. If t_3 were conjugate to t_1 or t_2 in $C(y)$, then this fusion must occur in H_1 since the connected components of \mathcal{C} form a system of imprimitivity. But since $C(y) \cap H_1$ has the form $C_2(y_1) \times C_f(t_1)$ this fusion cannot take place. We thus see that

$$(2.13) \quad <t_3^{C_t(y)} \cap H_1> \simeq A_5.$$
group having an elementary 2-Sylow subgroup (the centers entering into the central product having odd order). But T_1 must be a 2-Sylow center of this normal product. Also, $\langle t_3^{C(v)} \rangle^{H_1} \simeq A_5$ is a subgroup of $\langle t_3^{C(v)} \rangle$. It follows that either

(2.14) $\langle t_3^{C(v)} \rangle \simeq A_5$

or

(2.15) $\langle t_3^{C(v)} \rangle \simeq U(3, 4)^*$

where the asterisk indicates a perfect central extension of $U(3, 4)$ by a group of odd order (necessarily a 3-group). But in that case, $\langle t_3^{C(v)} \rangle^{H_1}$ corresponds to a subgroup of $U(3, 4)^*$ isomorphic to A_5, no two conjugates of which share a common involution (since the involutions of each lie in distinct connected components of G). Since this is clearly impossible, (2.14) holds. Then $t_3^{C(v)} \leq H_1$ and is stabilized by $C(y)$. It follows that $C(y) \leq H_1$.

(11) H_1 is strongly embedded in G.

This follows at once since H_1 contains a 2-Sylow normalizer and the centralizer of each of its involutions by (9) and (10).

A contradiction is now apparent. Since H_1 is a proper strongly embedded subgroup of G, by Bender’s theorem [1], G contains exactly one nonabelian simple composition factor $F \simeq SL(2, q)$, $Sz(q)$ or $U(3, q)$ for q a power of 2. But since J is a nonabelian simple subgroup of G, J is isomorphic to a subgroup of F. This is impossible since in the “Bender groups” centralizers of involutions are 2-closed while this subgroup-hereditary property fails in J.

References

Department of Mathematics, University of Florida, Gainesville, Gainesville, Florida 32603