Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Janko's simple group of order $ 175,560$


Author: E. Shult
Journal: Proc. Amer. Math. Soc. 35 (1972), 342-348
MSC: Primary 20D05
DOI: https://doi.org/10.1090/S0002-9939-1972-0306303-6
MathSciNet review: 0306303
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Janko's simple group J of order 175,560 is characterized among simple groups by the weak closure W of the involution in its centralizer. Among arbitrary finite groups, the theorem asserts that the normal closure of W is J.


References [Enhancements On Off] (What's this?)

  • [1] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlässt, J. Algebra 17 (1971), 527-554. MR 0288172 (44:5370)
  • [2] W. Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen, J. Reine Angew. Math. 190 (1952), 93-107. MR 14, 445. MR 0051226 (14:445e)
  • [3] G. Glauberman, Global and local properties of finite groups, Finite Simple Groups, Academic Press, New York, 1971. MR 0352241 (50:4728)
  • [4] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229. MR 0231903 (38:229)
  • [5] D. G. Higman, Focal series in finite groups, Canad. J. Math. 5 (1953), 477-497. MR 15, 396. MR 0058597 (15:396b)
  • [6] Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147-186. MR 33 #1359. MR 0193138 (33:1359)
  • [7] E. Shult, On the fusion of an involution in its centralizer (to appear). MR 0360818 (50:13265)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D05

Retrieve articles in all journals with MSC: 20D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0306303-6
Keywords: Finite sporadic simple group, weak closure of an involution in its centraliser
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society