Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

Uniqueness and norm convexity in the Cauchy problem for evolution equations with convolution operators


Author: Monty J. Strauss
Journal: Proc. Amer. Math. Soc. 35 (1972), 423-430
MSC: Primary 35S10
MathSciNet review: 0310478
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Uniqueness in the Cauchy problem is shown under suitable conditions for evolution equations of the form $ {u_t}(x,t) - B(t,{D_x})u(x,t) = 0$ , where B is a pseudo-differential operator of order $ k \geqq 0$ in the x variables. This is proved as a corollary to a norm convexity relation. In the process of showing this, an extension to Hölder's inequality is derived.


References [Enhancements On Off] (What's this?)

  • [1] A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations., Amer. J. Math. 80 (1958), 16–36. MR 0104925 (21 #3675)
  • [2] A.-P. Calderón, Existence and uniqueness theorems for systems of partial differential equations, Fluid Dynamics and Applied Mathematics (Proc. Sympos., Univ. of Maryland, 1961), Gordon and Breach, New York, 1962, pp. 147–195. MR 0156078 (27 #6010)
  • [3] Bernard Malgrange, Noyaux valeurs principales, Séminaire Schwartz (1959/60), Exp. 5–6, Faculté des Sciences de Paris, Paris, 1959/1960, pp. 11 (French). MR 0151872 (27 #1855)
  • [4] L. Nirenberg, Pseudo-differential operators, Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 149–167. MR 0270217 (42 #5108)
  • [5] Louis Nirenberg and François Trèves, On local solvability of linear partial differential equations. II. Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 459–509. MR 0264471 (41 #9064b)
  • [6] -, Remarks on the solvability of linear equations of evolution, Proc. Sympos. on Evolution Equations, Istituto di Alta Matematica, Rome 1970 (to appear).
  • [7] M. Strauss, Uniqueness and norm convexity for the Cauchy problem, Thesis, New York University, 1971.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35S10

Retrieve articles in all journals with MSC: 35S10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1972-0310478-2
PII: S 0002-9939(1972)0310478-2
Keywords: Uniqueness, Cauchy problem, evolution equation, Hölder's inequality, pseudo-differential operators
Article copyright: © Copyright 1972 American Mathematical Society