HENSELIAN FIELDS AND SOLID k-VARIETIES. II
GUSTAVE EFROYMOND

ABSTRACT. Let k be a real closed or Henselian field. A k-variety X (affine) is said to be solid if X is determined by its k points. It is shown that a k-variety is solid if and only if it contains a nonsingular k point. Another condition for solidity is given and a dimension theorem indicated.

0. Introduction. In [4] a solid k-variety is defined to be an affine k-variety which is determined by its k points. For real closed and Henselian fields with absolute value, we gave a natural condition which is necessary and sufficient for a k-variety to be solid. This condition is here extended to any Henselian field. Moreover, we also demonstrate that for any real closed or Henselian field k, a necessary and sufficient condition for a k-variety to be solid is that the variety contain a nonsingular k point. This condition is obviously insufficient when dealing with other fields such as the rationals. For example consider the curve $x^3+y^3=1$ defined over the rationals. It has only finitely many rational points all of which are nonsingular.

1. The projection condition. Let A be a local integral domain with maximal ideal m. Let A, m be Henselian and let k be the quotient field of A. Then we wish to show that if $f(x)$ in $k[x]$ has a root in k, then so do certain nearby polynomials.

Lemma 1.1 (like [2, Lemma 5.10]). If A, m is Henselian, $f(x) \in A[x]$, $\alpha \in A$ so that

(1) $f'(\alpha) = \mu$;

(2) for some $\delta \in m$, $f(\alpha) \equiv 0 \mod \mu^2 \delta$;

then $f(x)$ has a root $\alpha' \equiv \alpha \mod \mu \delta$.

Proof [2]. Let z be a new variable and try to solve $f(\alpha + \mu z) = 0$ for z. First expand $f(\alpha + \mu z) = f(\alpha) + \mu f'(\alpha) + \mu^2 w(z)$ where $w(z) \in A[z]$ and is of degree ≥ 2. Also $f(x) = \mu^2 \delta \delta'$ for some $\delta' \in A$. We want to solve

Received by the editors September 14, 1971.

Key words and phrases. Solid k-variety, Henselian field, real closed field, implicit function theorem.

© American Mathematical Society 1972

362
Let \(h(z) = \delta z' + z + w(z) \) for \(z \). Let \(h(z) = \delta z' + z + w(z) \). Then \(h(0) = \delta z' \in m \), \(h'(0) = 1 \). But \(A \) is Henselian so \(h \) has a root \(z_0 \in m \). Then \(f(x + mu_0) = 0 \).

Lemma 1.2. Let \(h(x) \in A[x] \) be monic of degree \(r \) and suppose

1. \(h(\beta) = 0, \beta \in A \);
2. \(h'(\beta) = \mu \neq 0 \).

Then for \(\delta \in m \), \(g(x) \in A[x] \), \(f(x) = h(x) + h^2g(x) \) has a root in \(A \).

Proof. Note \(f'(\beta) = h'(\beta) + h^2g'(\beta) = \mu u \) for some unit \(u \in A \). But \(f(\beta) = h(\beta) + h^2g(\beta) = \mu h(\beta) \) and is thus divisible by \(\mu^2 \delta \). Now apply Lemma 1.1.

Lemma 1.3. Let \(f(x) \in k[x] \) be of degree \(r \) and let \(f(x) \) have a simple root \(\alpha \) in \(k \). Then there exists \(\gamma \in A \) so that for all \(g(x) \in A[x] \) of degree \(r \), \(f(x) + \gamma g(x) \) has a root in \(k \).

Proof. There exists \(b \in A \) so that \(b\alpha = \beta \in A \). Next define \(h(x) \) so that \(h(bx) = b \cdot f(x) \). Then one checks that \(h(x) \in A[x] \) and \(h(\beta) = 0 \). Next \(h'(\beta) = \mu \neq 0 \) since \(\alpha \) is a simple root of \(f \). By Lemma 1.2, if \(\delta \in m \), \(h(x) + \mu^2 h^2g(x) \) has a root \(\beta' \in A \) for any \(g(x) \in A[x] \). But then \(h(bx) + \mu^2 h^2g(bx) \) also has a root \(\beta' \mid b \in k \). So \(f(x) + b^{-r} \mu^2 h^2g(bx) \) also has a root \(\beta' \mid b \in k \). But this is sufficient for our purpose since if \(g(x) \in A[x] \) is of degree \(r \), then \(f^r(b^{-1} x) = 0 \) in \(A[x] \). So if \(\gamma = \mu^2 \delta \) then \(f(x) + b^{-r} \mu^2 \delta (b^r g(b^{-1} x)) = b(x) + \mu^2 h^2g(x) = f(x) + \gamma g(x) \) has a root in \(k \).

Definition 1.3. Given \(A \) and \(k \) as above, a point \(P \in k^d \) and \(\lambda \in A \), we wish to define a neighborhood of \(P \) in \(k^d \) which we call a \(\lambda \)-sphere. Namely, let \(n \) be an integer \(\geq 0 \) and let

\[S_{\lambda, n} = \{ Q \in k^d | Q = P + \lambda v, \text{ where } v \in (m^n)^{\times d} \}. \]

Definition 1.4. Let \(k \) be a field, \(\bar{k} \) its algebraic closure. Let \(X \) be an affine \(k \)-variety which we consider as a subset of \(\bar{k}^n \) for some \(n \). Let \(X_k = X \cap k^n \). We say \(X \) is **solid** if \(I(X_k) = I(X) \) in \(k[X_1, \ldots, X_n] \). By \(I(X_k) \) we mean all polynomials in \(k[X_1, \ldots, X_n] \) which vanish on \(X_k \). Thus \(X \) is solid if \(X \) is determined by its \(k \) points.

We wish to give conditions on \(X \) which will be necessary and sufficient for \(X \) to be solid.

Lemma 1.5. Let \(X \) be a \(k \)-variety of dimension \(d \) and let \(\pi : X \to k^d \) be a morphism. Then \(X \) is solid if \(\pi_k(X_k) \supseteq S_{\lambda, n} \) for some \(\lambda \)-sphere \(S_{\lambda, n} \).

Proof. It is easy to see that if \(f \in k[Y_1, \ldots, Y_d] \) vanishes on \(S_{\lambda, n} \), then \(f \equiv 0 \). If \(X \) is not solid, then \(X_k \subseteq W \) for some proper subalgebraic set \(W \) of \(X \). Then dimension \(W < d \) which implies \(\dim \pi(W) < d \). But \(\pi(W) \supseteq S_{\lambda, n} \) implies dimension \(\pi(W) \geq d \), a contradiction.
Let X be a variety of dimension d. Then if $k[x_1, \ldots, x_n]$ is the coordinate ring of X, by Noether normalization [6, p. 266], we can assume x_1, \ldots, x_d are independent transcendental and $k[x_1, \ldots, x_n]$ is integral and separable over $k[x_1, \ldots, x_d]$. Let $\pi: X \to k^d$ be the induced morphism.

PROPOSITION 1.6. Let k be Henselian, i.e., the quotient field of a Henselian ring A. Let X be a k-variety of dimension d and $\pi: X \to k^d$ as above. Then X is solid if and only if $\pi(X_k)$ contains a λ-sphere.

Proof. The proof is the same as that given in [4] except that here one gets a λ-sphere. First choose $z \in k[x_1, \ldots, x_n]$ so that the quotient field of $k[x_1, \ldots, x_d, z]=\text{quotient field of } k[x_1, \ldots, x_n]$. Then let $f(x_1, \ldots, x_d, z)=$ the primitive irreducible polynomial of z over $k(x_1, \ldots, x_d)$. Then $f(x_1, \ldots, x_d, Z)=\sum_{i=0}^{m} a_i(x_1, \ldots, x_d)Z^i$ is irreducible in $k[x_1, \ldots, x_d, Z]$.

Now $x_{d+1}=\sum_{j=0}^{m} (b_{ij}(x_1, \ldots, x_d))z^j$ where $b_{ij}, c_{ij} \in k[x_1, \ldots, x_d]$. We let $U=\{P' \in X|a_m(P')\neq 0, \text{ all } c_{ij}(P')\neq 0 \text{ and } (\partial f/\partial z)(P')\neq 0\}$. Noting U is nonempty, we can choose $P' \in U$. Let $P=\pi(P')$.

Now choose λ so that if $Q \in S_{P, x_1}$ then $a_m(Q)\neq 0$, all $c_{ij}(Q)\neq 0$ and, using Lemma 1.3, $f(Q, Z)$ has a root $a \in k$.

Then we let $Q'=(x_1(Q), \ldots, x_d(Q), x_{d+1}(Q, a), \ldots, x_n(Q, a))$. And as in [4] show that Q' is a k point of X and $\pi(Q')=Q$. This shows $\pi(X_k) \supset S_{P, x_1}$.

From Proposition 1.6 it is possible to prove as in [4] a dimension theorem.

THEOREM 1.7. Let k be a Henselian field, X a solid k-variety of dimension d. Let W_1, \ldots, W_r be subvarieties of X of dimension $\leq d-2$. Then there exists a solid k-variety W contained in X with dimension $W=d-1$ and $W=W_1 \cup \cdots \cup W_r$.

Proof. Just as in [4, Theorem 3].

2. The nonsingular point condition.

THEOREM 2.1. Let k be Henselian or real closed. A k-variety X is solid if and only if X_k contains a nonsingular point of X.

Proof. First the Henselian case. Let Q be a nonsingular point of X. Let $k=\text{the quotient field of } A$ and let $k[x_1, \ldots, x_n]$ be the polynomial ring. Let $d=\text{dim } X$. Then we can find $f_1, \ldots, f_r, r=n-d$, in $k[x_1, \ldots, x_n]$ so that $X=V(f_1, \ldots, f_r)$ in a neighborhood of Q. We can assume all $f_i \in A[x_1, \ldots, x_n]$. We know rank($(\partial f_i/\partial x_j)(Q))=r$. Then by reordering the x_i's, we can assume

$$\det_{i,j=1, \ldots, r}((\partial f_i/\partial x_j)(Q)) = \mu \neq 0.$$
We next want to apply Lemma 5.10 of [2]. To do this, we need to change $Q=(a_1, \ldots, a_r, b_1, \ldots, b_d)=(a, b)$. There exists $\gamma \in A$ so that $\gamma a_i, \gamma b_j \in A$ for all i, j. Let $\gamma a=(\gamma a_1, \ldots, \gamma a_r)$. Let $d_i=$ degree of f_i. We then let $h_i(\gamma x)=\gamma^{d_i}f_i(x)$ and then $h_i(\gamma a, \gamma b)=0$. Moreover $(\partial h_i/\partial x_j)(\gamma a, \gamma b)=\gamma^{d_i-1}(\partial f_i/\partial x_j)(a, b)$ so we get $\det_{1 \leq i, j \leq r}(\partial h_i/\partial x_j)(\gamma a, \gamma b)=\gamma^s u$ for some s. Now choose b' so $\gamma b'=\gamma b+\gamma^{2s}u^2$ where $v \in m^{\times d}$. Then $h_i(\gamma a, \gamma b') \equiv 0 \mod \mu^2\gamma^{2s}m$, all i. And

$$\det((\partial h_i/\partial x_j)(\gamma a, \gamma b')) \equiv \gamma^s u \mod \gamma^{2s}u^2m,$$

and so

$$= \gamma^s uu \quad \text{where } u \text{ is a unit in } A.$$

By Lemma 5.10 of [2], there exists $a' \in k$ so that $h_i(a', b')=0$ for all i. Then $f_i(a', b')=0$ for all i. This means $b' \in \pi(X_k)$ where $\pi(a, b)=b$. Letting $\lambda=\mu^2\gamma^{2s}$ and $P=\pi(Q)$, we have $\pi(X_k) \supset P_{\lambda, a, 1}$, and so by Lemma 1.5, X is solid.

For the real closed case, we need to prove an implicit function theorem.

Lemma 2.2. Let k be a real closed field and $f_1, \ldots, f_r \in k[x_1, \ldots, x_r]$. Let $X=V(f_1, \ldots, f_r)$. Let $P \in X_k$ and suppose $\det((\partial f_i/\partial x_j)(P)) \neq 0$, $i, j=1, \ldots, r$. Then there exists $\epsilon \neq 0$ in k such that the following holds: Let $P=(a_1, \ldots, a_n)$, then if $\sum_{i=r+1}^{n}(b_i-a_i)^2 \leq \epsilon^2$, there exist b_1, \ldots, b_r in k such that $f_i(b_1, \ldots, b_r)=0$, $i=1, \ldots, r$. In other words, $\sum_{i=r+1}^{n}(b_i-a_i)^2 \leq \epsilon^2$ implies (b_{r+1}, \ldots, b_n) in $\pi(X_k)$ where $\pi: X \to k^d$ is the obvious projection.

Proof. We apply the Tarski-Seidenberg criterion given in Jacobson [5, p. 314], which states:

Let $t=(t_1, \ldots, t_r)$, $x=(x_1, \ldots, x_n)$. Let $f \in Q[t, x]$, Q the rational numbers. Then let $f(t, x)=0$ be an equality which has solutions for x in k^n for all substitutions for t in k^r, for some real closed field k.

Conclusion. For every real closed field k, we have solutions for x in k^n for all substitutions for t in k^r.

To translate our situation to the above, we must add new variables $t=(t_1, \ldots, t_r)$ as "dummy variables" to get polynomials $f(t, x) \in Q[t, x]$ so that substituting correctly for t in k^r, we obtain the $f_i(x)$. Next let $g(t, x_1, \ldots, x_n)=\det((\partial f_i/\partial x_j), i, j=1, \ldots, r)$. Adding a new variable x_{n+1}, we consider the polynomial

$$f(t, x_1, \ldots, x_{n+1}) = \sum_{i=1}^{r} f_i^2(t, x) + (1 - x_{n+1}g(t, x))^2 \in Q[t, x].$$

Add new variables $y_{r+1}, \ldots, y_n, z, \epsilon$ and let

$$h(x_{r+1}, \ldots, x_n, y_{r+1}, \ldots, y_n, z, \epsilon) = \sum_{i=r+1}^{n} (x_i-y_i)^2 - \epsilon^2 + z^2.$$

Now note that the statement in Lemma 2.2 is equivalent to: For every substitution of t_0 for t in k^r, if the equation $f(t_0, x_1, \ldots, x_{n+1})=0$ has a
solution for x_1, \cdots, x_{n+1} in k, then there exists $\varepsilon \neq 0$ so that if $y_{r+1}, \cdots, y_n, z \in k$ and $h(x_{r+1}, \cdots, x_n, y_{r+1}, \cdots, y_n, z, \varepsilon) = 0$, there exists $y_1, \cdots, y_r \in k$ so that $f(t_0, y) = 0$. Add new variables u, v and let

$$\alpha(t, x, y, z, u, v, \varepsilon) = (1 - uf(t, x))^2(1 - ev)^2 + (1 - h(x, y, z, \varepsilon)w)^2f^2(t, y).$$

Now one verifies that Lemma 2.2 for k is equivalent to the statement that $\alpha(t, x, y, z, u, v, \varepsilon) = 0$ has a solution in the remaining variables for all choices of $t_1, \cdots, t_r, x_1, \cdots, x_{n+1}, y_{r+1}, \cdots, y_n, z$ in k. But Lemma 2.2 is true for $k = \mathbb{R}$, the real numbers, by the implicit function theorem [1, p. 147]. Thus, by the theorem in Jacobson [5] quoted at the start of the proof, Lemma 2.2 is true for all real closed fields k.

To apply Lemma 2.2 to prove the real part of Theorem 2.1, choose P nonsingular in X_k. As in the Henselian case, we can find a neighborhood of P where $X = V(f_1, \cdots, f_r), f_i \in k[x_1, \cdots, x_n], r = n - d, d = \dim X$ and $\det_{i,j=1,\ldots,r}(\partial f_i/\partial x_j)(P) \neq 0$.

By Lemma 2.2, $\pi(X_k)$ contains a sphere in k^d. Then by the real equivalent of Lemma 1.5 (see [3, Theorem 1]) we are done.

To see that a solid k-variety contains a nonsingular k point, just note that the set U of nonsingular points of X is Zariski open X; and, since X is solid, $X_k \cap U$ is not empty.

Bibliography

Department of Mathematics, University of New Mexico, Albuquerque, New Mexico 87106