ON Q-DENSE AND DENSELY DIVISIBLE LCA GROUPS
D. L. ARMACOST AND W. L. ARMACOST

Abstract. In this note the structure of those LCA groups containing a dense subgroup isomorphic to the additive group of rational numbers is investigated. As a result of this investigation, it is shown that an LCA group containing a dense divisible subgroup of finite rank must be divisible.

In [1] the authors investigate the structure of those locally compact (Hausdorff) abelian (LCA) groups G containing a dense subgroup of the form $Z(p^n)$, where p is a prime. In this note we turn our attention to the following related (and more general) question: Which LCA groups contain as a dense subgroup a homomorphic image of the additive group Q of rational numbers?

All groups considered will be LCA unless otherwise specified. The additive group of the rational numbers is denoted by Q; when considered as a topological group, it has the discrete topology. By R we denote the group of real numbers with its usual topology. If p is a prime we denote by $Z(p^n)$ the (discrete) group of p^nth complex roots of unity. The p-adic integers and p-adic numbers are denoted by J_p and F_p respectively, with their usual topologies defined as in [3, §10]. Let G be compact and let K be a cardinal number. We write G^K for the (full) direct product of K copies of G with the compact product topology. If G is discrete, we write G^K for the (weak) direct sum of K copies of G, taken discrete. The character group of G is written \hat{G}.

Let E denote the minimal divisible extension [3, A.15] of the LCA group G. We always topologize E as in [3, 25.32(a)], so that E becomes a divisible LCA group containing G as an open subgroup. For example, if $G = \prod J_p$, by which we will always mean the full direct product of the groups J_p, one for each prime p, then E is topologically isomorphic to the local direct product [3, 6.16] of the groups F_p relative to the open subgroups J_p, one factor for each p [2, 25.32(d)]. We write this group as $L^p(F_p)$. We shall use the fact that $L^p(F_p)$ is self-dual [3, 25.34(b)]. We now state a lemma for future reference.
Lemma 1. Let \(f \) be a continuous monomorphism from a torsion-free LCA group \(G \) into a divisible LCA group \(D \). Then \(f \) may be extended to a continuous monomorphism \(\tilde{f}: E \rightarrow D \), where \(E \) is the minimal divisible extension of \(G \).

Proof. The homomorphism \(f \) may be extended to a homomorphism \(\tilde{f}: E \rightarrow D \) by [3, A.7]. Continuity of \(\tilde{f} \) follows from the openness of \(G \) in \(E \). That \(\tilde{f} \) is one-one follows from the fact that \(E/G \) is a torsion group [3, A.17].

Definition. An LCA group \(G \) is called \(Q \)-dense if and only if there exists a homomorphism \(f: Q \rightarrow G \) having dense image.

We may reformulate this definition by using the adjoint map [3, 24.37]. Thus an LCA group \(G \) is \(Q \)-dense if and only if there exists a continuous monomorphism \(f^* \) mapping \(G \) into \(Q \) [3, 24.41]. Obvious examples of \(Q \)-dense groups are \(Q \) and \(R \). By using our second formulation just given, it is easy to show that a compact group is \(Q \)-dense if and only if it is solenoidal [3, 9.2]. (Here we use the fact that \(\hat{Q} \) is algebraically isomorphic to \(Q^\omega \), where \(\omega \) denotes the power of the continuum.) In particular, \(\hat{Q} \) is \(Q \)-dense. An example of a totally disconnected \(Q \)-dense group other than \(Q \) is \(F_p \), and more generally \(LP(F_p) \). In fact, the next lemma shows that the direct product of \(R \), \(\hat{Q} \), and \(LP(F_p) \) is also \(Q \)-dense. This lemma will lead us to a description of the class of \(Q \)-dense groups. The authors are indebted to the referee for suggesting an important simplification in its proof.

Lemma 2. The group \(R \times LP(F_p) \times \hat{Q} \) is \(Q \)-dense.

Proof. We must show that there exists a continuous monomorphism \(f \) from \(R \times LP(F_p) \times \hat{Q} \) into \(\hat{Q} \). First, we set \(A = R \times LP(F_p) \), the group of adèles (see [2, §3.1]). Like \(R \), each group \(F_p \) contains canonically a dense subgroup isomorphic to the rationals, which we denote by \(Q \) in each case. It is shown in [2, §3.6] that there exists a continuous homomorphism \(\pi \) from \(A \) onto \(\hat{Q} \) whose kernel is the subgroup of \(A \) consisting of all sequences of the form \((x, x, x, \cdots)\) with \(x \in Q \). Let \(\varphi: A \rightarrow Q \) be defined by \(\varphi(x_0, x_2, \cdots, x_p, \cdots) = (x_0, 2x_2, \cdots, px_p, \cdots) \). Clearly, \(\varphi \) is a continuous monomorphism. Moreover, we see that \(\varphi(A) \cap \ker \pi = \{0\} \); this follows from the fact that no sequence of the form \((n, n, n, \cdots)\), where \(n \) is an integer, can belong to \(\varphi(A) \), since \(n \in pJ_p \) for at most finitely many primes \(p \). Hence the map \(\psi = \pi \circ \varphi \) is a continuous monomorphism from \(A \) into \(\hat{Q} \).

In order to complete our construction of \(f \), it will be necessary to show that the quotient group \(\hat{Q}/\psi(A) \) has cardinal number \(c \). To do this, we first define a homomorphism \(\pi' \) mapping \(A/\psi(A) \) onto \(\hat{Q}/\psi(A) \) by the rule
\pi'(a + \varphi(A)) = \pi(a) + \varphi(A), \text{ where } a \in A. \text{ We then observe that } \ker \pi' \text{ is isomorphic to the countable group } Q, \text{ and so } \hat{Q}/\varphi(A) \text{ will have cardinality } c \text{ if } A/\varphi(A) \text{ does also. But the cardinality of } A/\varphi(A) \text{ certainly exceeds that of } \\
\prod J_{p}(\varphi(A) \cap \prod J_{p}) = [\prod J_{p}] [\prod pJ_{p}] > [\prod pJ_{p}] [\prod Z(h)]/H, \text{ where } \\
\prod Z(p) \text{ is the (uncountable) full direct product of the } p \text{-element cyclic groups } Z(p) \text{ and } H \text{ is countable. Hence } A/\varphi(A) \text{ has cardinality } c, \text{ and therefore so does } \hat{Q}/\varphi(A).

Finally, we observe that \varphi(A) is a divisible subgroup of \hat{Q}. Hence there exists a subgroup } D \text{ of } \hat{Q} \text{ such that algebraically, } \hat{Q} \cong \varphi(A) \times D, \text{ where } D \cong \hat{Q}/\varphi(A) \text{ [3, A.8]. Since } D \text{ must be divisible, it follows from [3, A.14] and the preceding paragraph that } D \cong Q^{\infty}. \text{ Combining this isomorphism with the monomorphism } \psi: A \rightarrow \varphi(A) \text{ we can easily construct the desired continuous monomorphism } f \text{ mapping } A \times Q^{\infty} \text{ into } \hat{Q}. \text{ This completes the proof.}

We are now able to give a description of the Q-dense LCA groups.

Theorem 1. An LCA group } G \text{ is Q-dense if and only if } G \text{ is topologically isomorphic to } Q \text{ or to a quotient of } R \times \text{LP}(F_{p}) \times Q^{\infty} \text{ by a closed subgroup. In particular, every Q-dense LCA group is divisible.}

Proof. If } G \text{ has the form mentioned, it follows immediately, from Lemma 2 and the fact that a continuous homomorphic image of a Q-dense group is Q-dense, that } G \text{ is Q-dense.}

For the converse, assume that } G \text{ is Q-dense. Then there exists a continuous monomorphism } f: G \rightarrow \hat{Q}. \text{ Now } \hat{G} \text{ can be written in the form } \hat{G} \cong R^{n} \times \hat{G}_{0}, \text{ where } n \text{ is a nonnegative integer and } \hat{G}_{0} \text{ has a compact open subgroup [3, 24.30]. Now we must have } n \leq 1, \text{ for if } n > 1 \text{ we could find a continuous monomorphism from } R^{2} \text{ into } \hat{Q}. \text{ This would imply the existence, via the adjoint map, of a continuous homomorphism from } Q \text{ into } R^{2} \text{ having dense image, which is absurd. Next, let } K \text{ be the (compact) identity component of } \hat{G}_{0}. \text{ If } K \neq \{0\}, \text{ then } f(K) \text{ is a nontrivial closed connected subgroup of } \hat{Q}, \text{ and hence } f(K) = Q \text{ (this follows from the fact that all proper quotients of } Q \text{ are torsion groups). Hence } \hat{G} = K \text{ and } f \text{ is a topological isomorphism, so } G \text{ is just the discrete group } Q. \text{ On the other hand, if } K = \{0\}, \text{ we have that } \hat{G}_{0} \text{ is a totally disconnected torsion-free group, so that its minimal divisible extension } E \text{ [3, 25.32] is also totally disconnected [3, 7.8] and torsion-free [3, A.16]. We conclude from [3, 25.33] that } E \text{ has the form } Q^{n} \times E_{0}, \text{ where } n \text{ is a cardinal and } E_{0} \text{ is the minimal divisible extension of a product of groups } J_{p} \text{ for various primes } p. \text{ But since there exists a continuous monomorphism from } \hat{G}_{0} \text{ into } \hat{Q} \text{ there also exists a continuous monomorphism from } E \text{ into } \hat{Q} \text{ by Lemma 1. From this it follows that } n \leq c \text{ and that at most one group } J_{p} \text{ appears for each prime } p, \text{ since, as can be seen by examining the quotients of } Q, \text{ there}
do not exist continuous monomorphisms from J^2_p into \hat{Q}. Hence G_0 is isomorphic to a closed subgroup of $Q^* \times \text{LP}(F_p)$. This means that G is isomorphic to a closed subgroup of $R \times Q^* \times \text{LP}(F_p)$. The proof is completed by dualizing the preceding statement.

Remark 1. It is not hard to show that all solenoidal groups contain a dense copy of Q. It can also be shown, although we shall not do it here, that all Q-dense LCA groups contain a dense copy of Q, except for the proper quotients of Q taken discrete.

We close with an application of our findings to the study of densely divisible groups, that is, groups containing a dense divisible subgroup. If an LCA group G contains a dense divisible subgroup D, we seek conditions under which we may conclude that G is itself divisible. One sufficient condition is that either G or G be compactly generated; this can be shown with the aid of the structure theorem for compactly generated LCA groups [3, 9.8]. Below we show that, if D is not “too large”, the same conclusion can be drawn.

Theorem 2. Let G be an LCA group containing a dense divisible subgroup of finite rank. Then G is divisible.

Proof. We first recall that a divisible group of rank n can be written as the direct sum of n groups D_1, \cdots, D_n, where each D_i is isomorphic either to Q or $Z(p^n)$ for some prime p [3, A.14]. Our proof proceeds by induction. If G is an LCA group containing a dense divisible subgroup of rank 1, then G is Q-dense (recall that $Z(p^n)$ is a quotient of Q), so that G is divisible by Theorem 1. Next, assume that any LCA group containing a dense divisible subgroup of rank n is divisible. Now let G be an LCA group containing a dense divisible subgroup D of rank $n+1$. We wish to show that G is divisible. Write $D = D_1 \oplus \cdots \oplus D_n \oplus D_n+1$ as above, and set $D_* = D_1 \oplus \cdots \oplus D_n$. The closure \hat{D}_* of D_* in G is, by the inductive assumption, a divisible subgroup of G. If $\hat{D}_* = G$ there is nothing to prove. Otherwise, it is sufficient to show that the quotient G/\hat{D}_* is divisible, for then it follows immediately that G is divisible. But if π denotes the natural map from G onto G/\hat{D}_*, it is easy to see that $\pi(D_{n+1})$ is dense in G/\hat{D}_*, so that G/\hat{D}_* is Q-dense and hence divisible. This completes the proof.

Remark 2. Theorem 2 no longer remains valid if “finite” is replaced by “countable”. To see this, let E be the minimal divisible extension of the group J_p^p, where p is a prime; this group is described in [3, 25.32(c)] and [4, 2.2]. Since there exist continuous monomorphisms from J_p^p into \hat{Q}, we can construct a continuous monomorphism from J_p^p into $\hat{Q}^{\mathbb{N}_0}$. This monomorphism may be extended to a continuous monomorphism $f:E \to \hat{Q}^{\mathbb{N}_0}$ by Lemma 1. Hence the adjoint map $f^*:\hat{Q}^{\mathbb{N}_0} \to \hat{E}$ has dense image.
[3, 24.41]. Thus \hat{E} contains a dense divisible subgroup of countable rank, but \hat{E} is not divisible by [4, 2.7].

REFERENCES

Department of Mathematics, Amherst College, Amherst, Massachusetts 01002

Department of Mathematics, California State College at Dominguez Hills, Dominguez Hills, California 90246