Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An a priori estimate for the Gauss curvature of nonparametric surfaces of constant mean curvature


Author: Joel Spruck
Journal: Proc. Amer. Math. Soc. 36 (1972), 217-223
MSC: Primary 53A10
DOI: https://doi.org/10.1090/S0002-9939-1972-0307056-8
MathSciNet review: 0307056
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider surfaces of constant mean curvature in three-dimensional Euclidean space which have a nonparametric representation over a disc. It is shown that if the surface has a horizontal tangent plane at the origin of the disc, then the Gauss curvature of the surface at the origin satisfies an a priori bound. The existence of a bound is established by identifying and proving the existence of an extremal surface.


References [Enhancements On Off] (What's this?)

  • [1] Ch. Delaunay, Sur la surface de revolution dont la courbure moyenne est constante J. Math. Pures Appl. 6 (1841), 309-315.
  • [2] R. Finn, Remarks relevant to minimal surfaces, and to surfaces of prescribed mean curvature, J. Analyse Math. 14 (1965), 139-160. MR 32 #6337. MR 0188909 (32:6337)
  • [3] R. Finn and R. Osserman, On the Gauss curvature of nonparametric minimal surfaces, J. Analyse Math. 12 (1964), 351-364. MR 29 #3967. MR 0166694 (29:3967)
  • [4] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. Math.-Phys.-Chem. Abt. 1952, 51-56. MR 14, 885. MR 0054182 (14:885c)
  • [5] L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1952), 103-156; Addendum, 395. MR 0064986 (16:367c)
  • [6] J. C. C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc. 71 (1965), 195-270. MR 30 #4200. MR 0173993 (30:4200)
  • [7] R. Osserman, A survey of minimal surfaces, Van Nostrand Reinhold, New York, 1969. MR 41 #934. MR 0256278 (41:934)
  • [8] J. Serrin, The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc. (3) 21 (1970), 361-384. MR 43 #1093. MR 0275336 (43:1093)
  • [9] J. Spruck, Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal. (to appear). MR 0334010 (48:12329)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10

Retrieve articles in all journals with MSC: 53A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0307056-8
Keywords: Constant mean curvature, minimal surfaces, Gauss curvature, a priori estimate, Scherk surface, comparison methods, maximum principle
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society