ON THE COMPLETE INTEGRAL CLOSURE OF A DOMAIN

PAUL HILL

Abstract. For a given positive integer \(n \), a semivaluation domain \(D_n \) is constructed so that the complete integral closure has to be applied successively exactly \(n \) times before obtaining a completely integrally closed domain. Letting \(G_n \) be the group of divisibility of \(D_n \), we set \(G = \sum \mathbb{Z} G_n \), the cardinal sum of the groups \(G_n \). It is concluded that the semivaluation domain \(D \) having \(G \) as its group of divisibility is a Bezout domain with the property that \(D \subset D^* \subset D^{**} \subset D^{***} \subset \cdots \) is a strictly ascending infinite chain, where \(D^* \) is the complete integral closure of \(D \).

By a classical theorem of Krull, if \(G \) is a totally ordered abelian group then there exists a valuation domain \(D \) having \(G \) as its group of divisibility. There is, in fact, a standard construction of such a domain \(D \) based on the group algebra \(k(G) \) over any field \(k \). This construction was generalized from the case that \(G \) is totally ordered to a lattice ordered group \(G \) by P. Jaffard in [2]. Thus if \(G \) is an abelian \(l \)-group, we have via Krull-Jaffard an integral domain \(D[G] \) whose group of divisibility is \(G \). J. Ohm observed in [3] that this semivaluation domain \(D[G] \) is always a Bezout domain. The terminology "semivaluation domain" was established in [4].

The complete integral closure of a domain \(D \) in its quotient field is denoted herein by \(C(D) \) (a domain \(R \) is completely integrally closed if \(R \) contains each element \(x \) of its quotient field for which there exists an element \(d \neq 0 \) in \(R \) such that \(dx^n \in R \) for all \(n \geq 0 \)). More generally, for any positive integer \(n \), let \(C^n(D) = C(C^{n-1}(D)) \). In [1], W. Heinzer gave an example of a lattice ordered abelian group \(G \) such that \(C^2(D[G]) \neq C(D[G]) \). Thus, \(D[G] \) in Heinzer’s example is a Bezout domain whose complete integral closure is not completely integrally closed. In Heinzer’s example, \(D[G] \) has infinite dimension, but P. Sheldon [5] has refined the example so that \(D[G] \) has dimension two.

Received by the editors December 2, 1971.
AMS 1970 subject classifications. Primary 13B20; Secondary 06A60.
Key words and phrases. Complete integral closure, semivaluation, Bezout domain, group of divisibility, lattice ordered group.
1 This research was supported in part by NSF Grant GP-29025.
Although we have examples where $C^2(D[G]) \neq C(D[G])$, it has not been known whether or not the inequality can persist between $C^n(D[G])$ and $C^{n+2}(D[G])$ for $n > 1$. In particular, we have the question concerning the complete integral closure of $C^2(D[G])$. In the examples of Heinzer and Sheldon, $C^2(D[G])$ is completely integrally closed, that is, $C^2(D[G]) = C^3(D[G])$. However, our purpose is to show that there exists a Bezout domain D such that the operation of taking successively the complete integral closure beginning with D does not stabilize in a finite number of steps. Since the domain D with the desired properties turns out to be $D[G]$ for some l-group G, our interest is focused on G.

The desired lattice ordered group will be built in stages. The first component is closely related to Heinzer's example in [1]. Let $I \oplus J$ denote the lexicographic sum of two copies of the integers; $(i,j) \geq 0$ if $i \geq 1$ or if $i = 0$ and $j \geq 0$. Let G_1 denote the collection of all functions f from the set N of nonzero integers into $I \oplus J$ that satisfy the following conditions. If $f(n) = (i(n), j(n))$, then

1. $i(n) = 0$ whenever n is negative.
2. $i(n) = 0$ for all but a finite number of positive n.
3. $j(n) = 0$ for all but a finite number of negative n, but there is no condition on $j(n)$ for positive n.

The set G_1 is a group with respect to pointwise addition. Furthermore, if we make $f \geq 0$ in G_1 if and only if $f(n) \geq 0$ for each $n \in N$, then G_1 is endowed with a lattice order. Before we describe G_2, two convex l-subgroups of G_1 are introduced. Let

$A = \{ f \in G_1 : f(n) = (i(n), j(n)), \text{ where } j(n) = 0 \}
\quad \text{for all but a finite number of } n \in N\}$,

and let

$K = \{ f \in G_1 : f(n) = (i(n), j(n)), \text{ where } i(n) = 0 \}
\quad \text{for all } n, j(n) = 0 \text{ if } n < 0, \text{ and } j(n) = 0 \}
\quad \text{for all but a finite number of positive } n\}$.

We now proceed to the construction of G_2. Let $P = P_1 + P_2 + \cdots + P_k + \cdots$ be a partition of the positive integers into an infinite number of infinite disjoint subsets P_k. Define the l-subgroup G_2 of G_1 by

$G_2 = \{ f \in G_1 : f(n) = (i(n), j(n)), \text{ then } (1) j(n) \}
\quad \text{is constant on } P_k \text{ for all but a finite number of } k, \text{ and (2) there exists, for each } k, \text{ integers } r \text{ and } s \text{ such that } j(n) = rn + s \}
\quad \text{for all but a finite number of } n \text{ in } P_k\}$.

One of the most interesting features of G_2 is that G_2/K is lattice isomorphic to G_1 under a mapping $\phi: G_1 \rightarrow G_2/K$ defined as follows. If $f \in G_1$ and if
If \(f(n) = (i(n), j(n)) \), then \(\phi(f) = g + K \), where \(g(n) = (\alpha(n), \beta(n)) \) with \(\alpha(n) \) and \(\beta(n) \) being defined by:

- \(\alpha(n) = 0 \) if \(n \) is negative,
- \(\alpha(n) = j(-2n) \) if \(n \) is positive,
- \(\beta(n) = j(2n + 1) \) if \(n \) is negative,
- \(\beta(n) = ni(k) + j(k) \) if \(n \in \mathbb{P}_k \).

It is routine to verify that \(\phi \) is an isomorphism from \(G_1 \) onto \(G_2/K \). In order to show that \(\phi \) is an \(l \)-isomorphism, it suffices to show that \(\phi(f) \geq 0 \) if and only if \(f \geq 0 \). In this connection, recall that \(\phi(f) = g + K \geq 0 \) in \(G_2/K \) if and only if \(g + k \geq 0 \) in \(G_2 \) for some \(k \in K \). Now suppose that \(f \geq 0 \) in \(G_1 \). Then \(f(n) = (i(n), j(n)) \geq 0 \) in \(I \oplus J \) for each nonzero integer \(n \). It follows that \(i(n) \geq 0 \) for all \(n \in N \) and that \(j(n) \geq 0 \) for all negative \(n \) since \(i(n) = 0 \) if \(n < 0 \). Furthermore, if \(j(n) < 0 \) for a positive \(n \), then \(i(n) > 0 \). Thus if \(\beta(n) = ni(k) + j(k) < 0 \) for \(n \in \mathbb{P}_k \), then \(i(k) \neq 0 \). Therefore, \(i(k) > 0 \) and \(\beta(n) \geq 0 \) for all but a finite number of \(n \in \mathbb{P}_k \). Since \(i(k) = 0 \) for all but a finite number of \(k \), we conclude that \(\beta(n) < 0 \) for at most a finite number of positive \(n \).

Since \(K \) absorbs the components \(\beta(n) \) for a finite number of positive \(n \), it follows that \(\phi(f) = g + K = (\alpha(n), \beta(n)) + K \geq 0 \). The argument that \(\phi(f) \geq 0 \) implies that \(f \geq 0 \) follows from a similar but somewhat simpler analysis.

It is important to observe that \(\phi(A) \equiv A/K \), where \(A \) and \(K \) are the subgroups of \(G_1 \) introduced earlier. In particular, \(A \subseteq G_2 \). Letting \(\beta : G_2 \twoheadrightarrow G_2/K \xrightarrow{\phi^{-1}} G_1 \) be the composition of the natural map \(G_2 \to G_2/K \) and the \(l \)-isomorphism \(\phi^{-1} \), we have the exact sequence

\[
\begin{array}{ccc}
i & K & \longrightarrow \ G_2 & \beta \\
& & \longrightarrow & G_1,
\end{array}
\]

where \(i \) is the inclusion map and \(\beta \) is an \(l \)-homomorphism. We define \(G_n \) for \(n \geq 3 \) inductively by \(G_{n+1} = \beta^{-1}(G_n) \), the complete inverse image of \(G_n \) under \(\beta \). Since \(\beta \) is an \(l \)-homomorphism, \(G_{n+1} \) is an \(l \)-subgroup of \(G_n \) and \(G_{n+1}/K \) is \(l \)-isomorphic to \(G_n \). Furthermore, since \(\phi(A) \equiv A/K \), we see that \(\beta(A) \subseteq A \). Hence \(A \subseteq G_n \), for each \(n \), inductively.

Recall that an element \(b \geq 0 \) in any lattice ordered abelian group \(G \) is said to be a bounded element of \(G \) if there exists \(g \in G \) such that \(nb \leq g \) for each positive integer \(n \). The bounded elements of \(G \) form a convex subsemigroup of \(G \), and the group

\[B(G) = \{ x : x = b - c \text{ where } b \text{ and } c \text{ are bounded in } G \} \]

is an ideal of \(G \). As is well known, there is a connection between bounded elements and the complete integral closure. If the Bezout domain \(D \) has \(G \) for its group of divisibility, then its complete integral closure \(C(D) \) has
G/B(G) for its group of divisibility. In particular, if G is any abelian l-group and D=D[G] is the semivaluation domain associated with G, then C(D) has G/B(G) for its group of divisibility. In view of this, we are especially interested in B(Gn) for the l-groups Gn that we have constructed. A simple inspection reveals that B(G1)=K=B(A), and therefore B(Gn)=K for all n since G1≥Gn≥A.

We have essentially established our first main result.

Theorem 1. For any nonnegative integer n, there exists a semivaluation domain D[Gn] such that

\[C(D[Gn]) \subset C^2(D[Gn]) \subset \cdots \subset C^{n+1}(D[Gn]) = C^{n+2}(D[Gn]) = \cdots. \]

Proof. Suitable examples G0, for n=0, are in abundance. For example, we can take G0=A≤G1. If n>0, we shall show that the l-group Gn constructed above satisfies the condition of the theorem. We have observed that G(Bx)=K, but it is easy to verify that B(Gx/K)≠0, whereas B((Gx/K)/B(Gx/K))=0. We conclude that C(D[Gx])⊆C^2(D[Gx])=C^3(D[Gx]). The theorem now follows inductively from the l-isomorphism G_{n+1}/K=G_n and the equation B(G_{n+1})=K.

We see from Theorem 1 that, for any prescribed positive integer n, there exists a semivaluation domain D such that the complete integral closure has to be applied exactly n times before obtaining a completely integrally closed domain. The next theorem, however, shows that there exists a semivaluation domain D such that C^n(D) is not completely integrally closed for any n.

Theorem 2. There exists a (Bezout) semivaluation domain D such that the infinite sequence

\[D \subset C(D) \subset C^2(D) \subset \cdots \subset C^n(D) \subset \cdots \]

is strictly ascending.

Proof. Choose the l-groups G_n so that they satisfy the conditions of Theorem 1. Let G=\(\sum_{n \geq 0} G_n \) be the (small) cardinal sum of the groups G_n. Letting Ĉ(G)=G/B(G) and letting Ĉk+1=ĈĈk, we see that

\[Ĉ^k(G) = \sum_{n \geq 0} Ĉ^k(G_n) \]

since Ĉ commutes with cardinal sums. Since Ĉk(G_n) is different from zero if k<n+1, Ĉk(G) is different from zero for all n. Hence Ĉk(D[G]) is not completely integrally closed no matter what k is.
REFERENCES

5. P. Sheldon, A counterexample to a conjecture of Heinzer (preprint).

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306