A CONDITION FOR ANALYTIC STRUCTURE

RICHARD F. BASENER

Abstract. Let \(X \) be a compact Hausdorff space, \(A \) a uniform algebra on \(X \), \(M \) the maximal ideal space of \(A \). Let \(f \in A \) and let \(W \) be a component of \(C \setminus f(X) \). Suppose that, for all \(\lambda \in W \), \(f^{-1}(\lambda)\) is at most countable. Then there is an open dense subset \(U \) of \(f^{-1}(W) \) which can be given the structure of a one-dimensional complex analytic manifold so that for all \(g \in A \), \(g \) is analytic on \(U \).

Let \(X \) be a compact Hausdorff space, let \(A \) be a uniform algebra on \(X \), and let \(M \) be the maximal ideal space of \(A \).

Theorem. Let \(f \in A \) and let \(W \) be a component of \(C \setminus f(X) \). Suppose that for all \(X \in W \), \(f^{-1}(X) = \{ x \in M \mid f(x) = X \} \) is at most countable. Then there is an open dense subset \(f^{-1}(W) \) which can be given the structure of a one-dimensional complex analytic manifold so that the functions in \(A \) become analytic there.

This theorem partially generalizes results for the case when \(f^{-1}(\lambda) \) is finite for all \(\lambda \) in a sufficiently large subset of \(W \), which are essentially contained in a paper of E. Bishop ([1], see Theorem 11.2 in [2]). A key result in the proof of this earlier result is also important in the proof of our theorem (see Lemma 13 in [1] or Theorem 10.7 in [2]).

Definition. Let \(p \in M \), and let \(\Phi \) be a continuous one-to-one map from \(\{ |z| < 1 \} \) into \(M \), with \(\Phi(0) = p \). The set \(\{ \Phi(z) \mid |z| < 1 \} \) is called an analytic disk through \(p \) if for all \(h \in A \), \(h \circ \Phi \) is analytic on \(\{ |z| < 1 \} \).

Lemma 1. Let \(f \in A \) and suppose that:

(a) \(|f| = 0 \) on \(X \);
(b) \(\exists \ p \in M \) with \(f(p) = 0 \);
(c) \(\exists \) a closed subset \(\Gamma_0 \) of \(\{ |z| = 1 \} \) having positive linear measure such that for each \(\lambda \in \Gamma_0 \) there is a unique point \(q \in X \) with \(f(q) = \lambda \).

Then \(f^{-1}(|z| < 1) \) is an analytic disk through \(p \).

Presented to the Society, October 13, 1971; received by the editors December 30, 1971.

Key words and phrases. Analyticity, maximal ideal space.

This research was supported in part by the National Science Foundation under grant GP-28574.
We also need the following elementary result (Lemma 11.1 in [2]).

Lemma 2. Let $f \in A$ and let W be a component of $C \setminus f(X)$. Fix $\lambda \in W$. If f takes on the value λ on M, then f takes on every value in W on M.

One further result is needed.

Lemma 3. Let $f \in A$ and let W be a component of $C \setminus f(X)$. Let $z \in W$, and suppose that $f^{-1}(z)$ is at most countable. Given a neighborhood \emptyset of a point $x \in f^{-1}(z)$, there is a compact neighborhood N of x with the properties that:

(a) N is A-convex, i.e., the maximal ideal space of $A|_{N}$ is N;
(b) $z \notin f(\partial N)$;
(c) $N \subseteq \emptyset \cap f^{-1}(W)$.

Furthermore, $f(N)$ is a neighborhood of z in C.

Proof of Lemma 3. Choose $\varepsilon > 0$ and functions $g_1, g_2, \cdots, g_n \in A$ so that

$$N = \{ y \in M \mid |g_j(y) - g_j(x)| \leq \varepsilon, 1 \leq j \leq n \} \subseteq f^{-1}(W) \cap \emptyset.$$

Since $f^{-1}(z)$ is at most countable, we may adjust ε so that, for all $y \in f^{-1}(z)$, $|g_j(y) - g_j(x)| \neq \varepsilon$, $j = 1, 2, \cdots, n$. Now if $y \in \partial N$, then $|g_j(y) - g_j(x)| = \varepsilon$ for some j, so $f^{-1}(z) \cap \partial N = \emptyset$ and it is clear that (a), (b) and (c) are satisfied.

By the local maximum modulus principle, the Shilov boundary of $A|_{N}$ is contained in ∂N (note that N does not meet the Shilov boundary of A). Hence $A|_{N}$ may be regarded as a uniform algebra on ∂N. Also, $z \in f(N) \setminus f(\partial N)$. By Lemma 2, $f(N)$ contains the component of z in $C \setminus f(\partial N)$, so $f(N)$ is a neighborhood of z as claimed.

Proof of Theorem. We will prove the following.

Assertion. If $f^{-1}(W)$ is nonempty, $\exists \ p \in f^{-1}(W)$ with a neighborhood in M which is an analytic disk through p.

Assume for the moment that the assertion has been established. Given any $x \in f^{-1}(W)$ and any neighborhood \emptyset of x, we may apply Lemma 3 to find a compact neighborhood N of x with properties (a), (b) and (c). Then the assertion may be applied to $f|_{N} \in A|_{N}$, to yield a point $p \in \emptyset$ with a neighborhood which is an analytic disk through p. Thus the set of such points is dense in $f^{-1}(W)$, and it is obviously open, so the Theorem follows.

Proof of Assertion. Suppose, on the contrary, that no point of $f^{-1}(W)$ has a neighborhood which is an analytic disk. We will use this assumption to find a point $z \in W$ such that $f^{-1}(z)$ is uncountable, contradicting the hypothesis of the Theorem. The uncountable set will consist of limit points obtained from sequences $\{x_{n_1n_2\cdots n_k}\}^{\infty}_{n=1}$ in M, which we will now define inductively.
Step 1. Since $f^{-1}(W)$ is nonempty, by Lemma 2 we have $f(f^{-1}(W)) = W$, so by Lemma 1 and the assumption that no point of $f^{-1}(W)$ has a neighborhood which is an analytic disk, there are distinct points $x_0, x_1 \in M$ and a corresponding $z_1 \in W$ such that $f(x_0) = f(x_1) = z_1$. By Lemma 3 there are disjoint compact A-convex neighborhoods N_{i_1} of x_{i_1} with the properties $N_{i_1} \subseteq f^{-1}(W)$, $z_1 \notin f(\partial N_{i_1})$, and $f(N_{i_1})$ is a neighborhood of z_1, $i_1 = 0, 1$. Choose ε_1 with $0 < \varepsilon_1 < 1$ so that

$$\{ z - z_1 \leq \varepsilon_1 \} \subseteq f(N_{i_1}) \cap f(\partial N_{i_1}), \quad i_1 = 0, 1. \quad (A_1)$$

Fix i_1 and look at

$$M_{i_1} = \{ y \in N_{i_1} \mid |f(y) - z_1| \leq \varepsilon_1 \} = N_{i_1} \cap f^{-1}(\{ z - z_1 \leq \varepsilon_1 \}).$$

M_{i_1} is a nonempty compact A-convex set, so the maximal ideal space of $A|_{M_{i_1}}$ is M_{i_1}. Let $X_{i_1} = \{ y \in N_{i_1} \mid |f(y) - z_1| = \varepsilon_1 \}$. Observe that $\partial M_{i_1} \subseteq (\partial N_{i_1} \cup X_{i_1}) \cap M_{i_1} = X_{i_1}$ since $\partial N_{i_1} \cap M_{i_1} = \emptyset$ by (A_1). Also observe that M_{i_1} does not meet the Shilov boundary of A. By the local maximum modulus principle, the Shilov boundary of $A|_{M_{i_1}}$ is contained in X_{i_1}. Thus we may apply Lemma 1 with $X = X_{i_1}$, $A = A|_{X_{i_1}}$, $M = M_{i_1}$, $f = (f - z_1)/\varepsilon_1$, to conclude that (since there is no analytic disk through any point of $f^{-1}(W)$):

$$\text{linear measure } \{ z \in C \mid |z - z_1| = \varepsilon_1 \} \text{ is unique in } N_{i_1},$$

and $f^{-1}(z)$ is unique in N_{i_1}, $i_1 = 0, 1$. (Note that $f^{-1}(z) \cap N_{i_1} = f^{-1}(z) \cap M_{i_1}$ if $|z - z_1| = \varepsilon_1$. The set described in statement (B_1) is measurable since Lemma 3 implies that it is closed. In fact, suppose that $\zeta_1, \zeta_2, \ldots \in C$, $\zeta_j \rightarrow \zeta \in C$, $|\zeta_j - z_1| = \varepsilon_1$ and there is precisely one $z_j \in N_{i_1}$ such that $f(z_j) = \zeta_j, j = 1, 2, \ldots$. Let $x \in f^{-1}(\zeta) \cap N_{i_1}$ and let V be any neighborhood of x in M. By Lemma 3, $f(V \cap N_{i_1})$ is a neighborhood of ζ in C, hence ζ_j is in $f(V \cap N_{i_1})$ for all $j \geq j_0$ for some j_0. But $f^{-1}(\zeta_j) \cap N_{i_1} = \{ z_j \}$, so x_j is in V for $j \geq j_0$. Thus x_j converges to x, and x is unique.)

This completes the first step.

Inductive hypothesis. Suppose that $z_n \in W$, $x_n \in M$, $N_n \subseteq M$ (where $a = i_1 \cdots i_n$) and $\varepsilon_n > 0$ have been chosen for $i_j = 0, 1$, $1 \leq j \leq n$. Assume that they satisfy the conditions: the 2^n points x_n are all distinct; $f(x_n) = z_n$; N_n is a compact A-convex neighborhood of x_n; $N_a \cap N_{b^*} = \emptyset$ (where b = $j_1 \cdots j_n$) unless $i_1 = j_1, \ldots, i_n = j_n$; $N_n \subseteq \text{interior } N_{i_1\cdots i_n-1}$, if $n > 1; \varepsilon_n < 1/n^2$.

(A_n)

$$\{ z - z_n \leq \varepsilon_n \} \subseteq f(N_n) \cap f(\partial N_n);$$

(B_n)

$$\text{linear measure } \{ z \in C \mid |z - z_n| = \varepsilon_n \} \text{ is unique in } N_n,$$

and $f^{-1}(z)$ is unique in N_n.
Step $n+1$. By (B$_n$), $\exists z_{n+1} \in \{ |z - z_n| = \varepsilon_n \}$ such that for all $i_1 \cdots i_n$, there are two distinct points $x_c \in N_a$ (where $c = i_1 \cdots i_{n+1}$, $i_{n+1} = 0, 1$) with $f(x_c) = z_{n+1}$. By (A$_n$), we have $x_c \in N_a \setminus f^{-1}(f(\partial N_a))$. Fix $a = i_1 \cdots i_n$ and choose disjoint open sets \emptyset_0, \emptyset_1 with

$$x_c \in \emptyset_{i_{n+1}} \subseteq N_a \setminus f^{-1}(f(\partial N_a)), \quad i_{n+1} = 0, 1.$$

Fix $i_{n+1} = 0$ or 1 and apply Lemma 3 with

$$A = \overline{\mathcal{A}|_{2N_a}}, \quad X = \partial N_a, \quad M = N_a, \quad f = f|_{N_a}, \quad W = \text{component of } z_{n+1} \text{ in } C \setminus f(\partial N_a), \quad z = z_{n+1}, \quad \emptyset = \emptyset_{i_{n+1}}, \quad x = x_c.$$

We conclude that there exist disjoint compact A-convex neighborhoods N_c of x_c, $i_{n+1} = 0, 1$, with the properties $z_{n+1} \notin f(\partial N_c)$, $f(N_c)$ is a neighborhood of z_{n+1}. Do this for all indices $c = i_1 \cdots i_{n+1}$, $i_j = 0, 1$, $1 \leq j \leq n+1$.

From the definition of the N_c it follows that we can choose an ε_{n+1} with $0 < \varepsilon_{n+1} < 1/(n+1)^2$ so that for all $i_1 \cdots i_{n+1}$ we have

$$(A_{n+1}) \quad \{|z - z_{n+1}| \leq \varepsilon_{n+1}\} \subseteq f(N_c) \setminus f(\partial N_c).$$

Fix $c = i_1 \cdots i_{n+1}$ and define

$$M_c = \{y \in N_c \mid |f(y) - z_{n+1}| \leq \varepsilon_{n+1}\},$$

$$X_c = \{y \in N_c \mid |f(y) - z_{n+1}| = \varepsilon_{n+1}\}.$$

As in Step 1, the maximal ideal space $\mathcal{A}|_M$ is M_c and the Shilov boundary of $\mathcal{A}|_M$ is contained in X_c. ((A_{n+1}) guarantees that $\partial M_c \subseteq X_c$.) We may therefore apply Lemma 1 with

$$X = X_c, \quad A = \mathcal{A}|_{X_c}, \quad M = M_c, \quad f = (f - z_{n+1})/\varepsilon_{n+1}.$$

We conclude that

$$(B_{n+1}) \quad \text{linear measure } \{z \in C \mid |z - z_{n+1}| = \varepsilon_{n+1}\} \text{ is unique in } N_c = 0.$$

This equation holds for all indices $c = i_1 \cdots i_{n+1}$, $i_j = 0, 1$, $1 \leq j \leq n+1$, and the induction is complete.

By the above construction $\{z_n\}$ is Cauchy, so $z_n \to z$ for some $z \in C$; $z \in W$ since, for each n, $z_n \in f(N_a) \subseteq f(N_0) \cup f(N_1)$, a compact subset of W.

Let $I = (i_1, i_2, \cdots, i_n, \cdots)$ be an infinite sequence of 0’s and 1’s. Some subnet of the sequence $x_{i_1}, x_{i_1i_2}, x_{i_1i_2i_3}, \cdots$ converges to a point $x_f \in M$, and by continuity $f(x_f) = z$. In this way we associate an x_f with each I.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since there are uncountably many distinct I's, the proof will be complete if we show that $x_I \neq x_J$ whenever $I \neq J$. Suppose therefore that $i_1 = j_1$, $i_2 = j_2$, \ldots, $i_m = j_m$, $i_{m+1} \neq j_{m+1}$. We know that $x_{i_1} \in N_{i_1}$, $x_{i_1 i_2} \in N_{i_1 i_2}$, \ldots and $N_{i_1} \supseteq N_{i_1 i_2} \supseteq N_{i_1 i_2 i_3} \cdots$ by the inductive hypotheses. Thus $x_I \in \bigcap_{n=1}^\infty N_n$. Similarly $x_J \in \bigcap_{n=1}^\infty N_n$ where $b = j_1 \cdots j_n$. But $N_{i_1} \cap N_{i_1} \cdots \cap N_{i_1 i_2 i_3} = \emptyset$ since $i_{m+1} \neq j_{m+1}$, so $x_I \neq x_J$.

B. Cole has pointed out that if one merely assumes that $f^{-1}(\lambda)$ is countable for λ in a subset of W of positive plane measure, the same proof shows that there is at least one point $p \in f^{-1}(W)$ with a neighborhood in M which is an analytic disk through p.

I would like to thank J. Wermer, who pointed out to me the question answered by the Theorem, for many helpful discussions and suggestions.

References

2. J. Wermer, Banach algebras and several complex variables, Markham, Chicago, Ill., 1971.

Department of Mathematics, Brown University, Providence, Rhode Island 02912

Current address: Department of Mathematics, Yale University, New Haven, Connecticut 06520