SELF-UNIVERSAL CRUMPLED CUBES AND
A DOGBONE SPACE

E. H. ANDERSON

Abstract. The question of whether each self-universal crumpled cube is universal is answered negatively by presenting an example of a dogbone space which is not topologically E^3 but which can be expressed as a sewing of two crumpled cubes, one of which is self-universal.

C. D. Bass and R. J. Daverman [2] presented a brief paper indicating that the solid Alexander horned sphere is an example of a crumpled cube which is self-universal but not universal, thus answering negatively the question asked by C. E. Burgess and J. W. Cannon in [4] of whether each self-universal crumpled cube is universal. The validity of the example presented by Bass and Daverman depends on a claim that a certain upper semicontinuous decomposition of S^3 into points and tame arcs, described in [2], is not topologically S^3, which in turn depends on the validity of four lemmas which are stated in [2, §2]. The proofs of these four lemmas appear to entail nontrivial arguments which are not included in [2].

In this note, we present an example of a dogbone space, an upper semicontinuous decomposition of S^3 into points and tame arcs whose nondegenerate elements can be expressed as the intersection of a tower of solid double tori, which is not topologically S^3. The dogbone space can be described as the result of a sewing of two crumpled cubes, one of which is self-universal. Thus, the question asked by Burgess and Cannon in [4] is answered negatively. The argument will be based essentially upon work by Casler [5] and the author [1].

Some recent work by Eaton [6] includes a different proof that the solid Alexander horned sphere H, used in the example presented by Bass and Daverman, is not universal. This was done by sewing H to the crumpled cube T described by Stallings [7] so that the wild points of $\text{Bd } H$ are sewn to the Cantor set of nonpiercing points of T. Other methods developed by Eaton, in papers cited in [6], should offer alternative ways

Presented to the Society, October 30, 1971; received by the editors August 18, 1971.
Key words and phrases. Crumpled cube, upper semicontinuous decomposition, E^3.

1 Supported by Mississippi State University Biological and Physical Sciences Research Institute.

© American Mathematical Society 1972

280
to show that neither the decomposition space we describe here nor the one described by Bass and Daverman \[2\] is topologically S^3.

Definitions relating to crumpled cubes will be those of \[2\].

1. **The example.** The description of the dogbone space of this paper is modeled after that by Bing in \[3\]. As in Figure 1, let H_1 and H_2 denote the upper and lower half-spaces of S^3, and P the xy-plane. Let A_0 denote a solid double torus which intersects P in a disk. Then, embed solid double tori A_1, \ldots, A_4, linked as indicated, in A_0; although each of A_1, \ldots, A_4 is shown as a finite graph, it is topologically equivalent to A_0. Then, for each $i=1, \ldots, 4$, solid double tori $A_{i,1}, \ldots, A_{i,4}$ are embedded in A_i such that there is a homeomorphism of S^3 onto itself which is the identity on the complement of some open set containing A_0 and takes A_0 onto A_i. Succeeding steps of the construction are to be described inductively.

Let $M=A_0 \cap \sum A_1 \cap \sum A_{i,j} \cap \sum A_{i,j,k} \cdots$. Let G be the set whose elements are components of M and one-point subsets of $S^3 - M$. Then, G is an upper semicontinuous decomposition of S^3 into points and tame
arcs. Let S^3/G denote the associated decomposition space, the dogbone space of this note.

From [1], we have that S^3/G is not topologically S^3.

The methods of Casier [5] can be easily modified to show that H^*_2, the natural projection of H_2 in S^3/G, is a self-universal crumpled cube.

Since H^*_1, the natural projection of H_1 in S^3/G, is a crumpled cube and S^3/G is the result of a sewing of H^*_1 and H^*_2, we have that H^*_2 is not a universal crumpled cube.

Bibliography

3. R. H. Bing, *A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3*, Ann. of Math. (2) 65 (1957), 484–500. MR 19, 1187.

Department of Mathematics, Mississippi State University, State College, Mississippi 39762