Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rank three affine planes


Author: Michael J. Kallaher
Journal: Proc. Amer. Math. Soc. 36 (1972), 79-86
MSC: Primary 50D05
DOI: https://doi.org/10.1090/S0002-9939-1972-0313929-2
MathSciNet review: 0313929
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A permutation group has rank 3 if it is transitive and the stabilizer of a point has exactly three orbits. A rank 3 collineation group of an affine plane is one which is a rank 3 permutation group on the points. Several people (see [4], [7], [8], [12]) have characterized different kinds of affine planes using rank 3 collineation groups. In this article we prove the following: Let $ \mathcal{A}$ be a finite affine plane of nonsquare order having a rank 3 collineation group which acts regularly on one of its orbits on the line at infinity. $ \mathcal{A}$ must be either (i) a Desarguesian plane, (ii) a semifield plane, or (iii) a generalized André plane.


References [Enhancements On Off] (What's this?)

  • [1] G. D. Birkhoff and H. S. Vandiver, On the integraldivisor of $ {a^n} - {b^n}$, Ann. of Math. 5 (1904), 173-180. MR 1503541
  • [2] M. V. D. Burmeister and D. R. Hughes, On the solvability of autotopism groups, Arch. Math. 16 (1965), 178-183. MR 31 #2330. MR 0178072 (31:2330)
  • [3] P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin and New York, 1968. MR 38 #1597. MR 0233275 (38:1597)
  • [4] D. G. Higman, On finite affine planes of rank 3, Math. Z. 104 (1968), 147-149. MR 36 #7018. MR 0223971 (36:7018)
  • [5] B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302. MR 0224703 (37:302)
  • [6] M. J. Kallaher, On finite affine planes of rank 3, J. Algebra 13 (1969), 544-553. MR 40 #832. MR 0247567 (40:832)
  • [7] -, A class of rank three affine planes, Math Z. 119 (1971), 75-82. MR 0295198 (45:4266)
  • [8] M. J. Kallaher and T. G. Ostrom, Fixed point free linear groups, rank three planes, and Bol quasifields, J. Algebra 18 (1971), 159-178. MR 0285625 (44:2843)
  • [9] R. A. Liebler, Finite affine planes of rank three are translation planes, Math. Z. 116 (1970), 89-93. MR 42 #948. MR 0266039 (42:948)
  • [10] H. Lüneburg, Über projektive Ebenen, in denen jede Fahne von einer nichttrivialen Elation invariant gelassen wird, Abh. Math. Sem. Univ. Hamburg 29 (1965), 37-76. MR 32 #4594. MR 0187140 (32:4594)
  • [11] D. S. Passman, Permutation groups, Benjamin, New York, 1968. MR 0237627 (38:5908)
  • [12] O. Prohaska, Endliche ableitbare affine Ebenen, Geometriae Dedicata (to appear). MR 0305227 (46:4357)
  • [13] E. Schenkman, Group theory, Van Nostrand, Princeton, N.J., 1965. MR 33 #5702. MR 0197537 (33:5702)
  • [14] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. (1892), 265-284. MR 1546236

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 50D05

Retrieve articles in all journals with MSC: 50D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1972-0313929-2
Keywords: Affine plane, collineation group, rank 3
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society