Certain m.o.l.s. as groups
Author:
Judith Q. Longyear
Journal:
Proc. Amer. Math. Soc. 36 (1972), 379384
MSC:
Primary 05B15
MathSciNet review:
0307943
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is shown that latin squares may be composed in a natural way, and that many sets of mutually orthogonal latin squares (m.o.l.s.) connected with projective planes may be regarded as groups of m.o.l.s. An axiom T6 is given for ternary rings. If T6 is true for a given ring, then the associated projective plane has prime power order; thus if T6 is a consequence of the definition for ternary rings, all projective planes have prime power order.
 [1]
Leonard
Eugene Dickson, Linear algebras in which division is
always uniquely possible, Trans. Amer. Math.
Soc. 7 (1906), no. 3, 370–390. MR
1500755, http://dx.doi.org/10.1090/S00029947190615007555
 [2]
Marshall
Hall, Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229–277. MR 0008892
(5,72c), http://dx.doi.org/10.1090/S00029947194300088924
 [3]
, Combinatorial theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80.
 [4]
Paul
R. Halmos, Finite Dimensional Vector Spaces, Annals of
Mathematics Studies, no. 7, Princeton University Press, Princeton, N.J.,
1942. MR
0006591 (4,11a)
 [5]
Oswald
Veblen and W.
H. Bussey, Finite projective geometries,
Trans. Amer. Math. Soc. 7 (1906),
no. 2, 241–259. MR
1500747, http://dx.doi.org/10.1090/S00029947190615007476
 [6]
O.
Veblen and J.
H. MaclaganWedderburn, NonDesarguesian and nonPascalian
geometries, Trans. Amer. Math. Soc.
8 (1907), no. 3,
379–388. MR
1500792, http://dx.doi.org/10.1090/S00029947190715007921
 [7]
Henry
B. Mann, The construction of orthogonal Latin squares, Ann.
Math. Statistics 13 (1942), 418–423. MR 0007736
(4,184b)
 [8]
Herbert
John Ryser, Combinatorial mathematics, The Carus Mathematical
Monographs, No. 14, Published by The Mathematical Association of America,
1963. MR
0150048 (27 #51)
 [1]
 L. Dickson, Linear algebras in which division is always uniquely possible, Trans. Amer. Math. Soc. 7 (1906), 371390. MR 1500755
 [2]
 M. Hall, Jr., Projective planes. Trans. Amer. Math. Soc. 54 (1943), 229277. MR 5, 72. MR 0008892 (5:72c)
 [3]
 , Combinatorial theory, Blaisdell, Waltham, Mass., 1967. MR 37 #80.
 [4]
 P. R. Halmos, Finite dimensional vector spaces, Ann. of Math. Studies, no. 7, Princeton Univ. Press, Princeton, N.J., 1942, p. 66. MR 4, 11. MR 0006591 (4:11a)
 [5]
 O. Veblen and W. Bussey, Finite projective geometries, Trans. Amer. Math. Soc. 7 (1906), 241259. MR 1500747
 [6]
 O. Veblen and J. Wedderburn, Nondesarguesian and nonpascalian geometries, Trans. Amer. Math. Soc. 8 (1907), 379388. MR 1500792
 [7]
 H. Mann. The construction of orthogonal latin squares, Ann. Math. Statist. 13 (1942), 418423. MR 4, 184; 340. MR 0007736 (4:184b)
 [8]
 H. J. Ryser, Combinatorial mathematics, Carus Math. Monographs, no. 14, Math. Assoc. Amer.; distributed by Wiley, New York, 1963. MR 27 #51. MR 0150048 (27:51)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
05B15
Retrieve articles in all journals
with MSC:
05B15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939197203079430
PII:
S 00029939(1972)03079430
Article copyright:
© Copyright 1972 American Mathematical Society
