Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A planar face on the unit sphere of the multiplier space $ M\sb{p}$, $ 1<p<\infty $


Authors: Charles Fefferman and Harold S. Shapiro
Journal: Proc. Amer. Math. Soc. 36 (1972), 435-439
MSC: Primary 42A18
MathSciNet review: 0308669
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The unit sphere of the Banach space $ {M_p}$ of Fourier multipliers, $ 1 < p < \infty $, is shown to contain a flat portion, i.e. a portion of a plane having codimension one. The proof is based on an elementary inequality, a generalization of the classical Bernoulli inequality.


References [Enhancements On Off] (What's this?)

  • [1] R. E. Edwards, Fourier series: a modern introduction. Vol. II, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1967. MR 0222538 (36 #5588)
  • [2] L. Leindler, On a generalization of Bernoulli's inequality, Acta Sci. Math. (Szeged) (to appear).
  • [3] D. S. Mitrinović, Analytic inequalities, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. \tseries Die Grundlehren der mathematischen Wissenschaften, Band 165. MR 0274686 (43 #448)
  • [4] Harold S. Shapiro, Fourier multipliers whose multiplier norm is an attained value, Linear operators and approximation (Proc. Conf., Oberwolfach, 1971), Birkhäuser, Basel, 1972, pp. 338–347. Internat. Ser. Numer. Math., Vol. 20. MR 0390623 (52 #11448)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A18

Retrieve articles in all journals with MSC: 42A18


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1972-0308669-X
PII: S 0002-9939(1972)0308669-X
Keywords: Fourier multiplier, unit sphere, Bernoulli inequality
Article copyright: © Copyright 1972 American Mathematical Society