On certain convolution inequalities

Author:
Lars Inge Hedberg

Journal:
Proc. Amer. Math. Soc. **36** (1972), 505-510

MSC:
Primary 46E30; Secondary 46E35

MathSciNet review:
0312232

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that certain convolution inequalities are easy consequences of the Hardy-Littlewood-Wiener maximal theorem. These inequalities include the Hardy-Littlewood-Sobolev inequality for fractional integrals, its extension by Trudinger, and an interpolation inequality by Adams and Meyers. We also improve a recent extension of Trudinger's inequality due to Strichartz.

**[1]**David R. Adams and Norman G. Meyers,*Bessel potentials. Inclusion relations among classes of exceptional sets*, Bull. Amer. Math. Soc.**77**(1971), 968–970. MR**0284607**, 10.1090/S0002-9904-1971-12821-5**[1a]**-,*Bessel potentials. Inclusion relations among classes of exceptional sets*(to appear).**[2]**Emilio Gagliardo,*Ulteriori proprietà di alcune classi di funzioni in più variabili*, Ricerche Mat.**8**(1959), 24–51 (Italian). MR**0109295****[3]**G. H. Hardy and J. E. Littlewood,*Some properties of fractional integrals. I*, Math. Z.**27**(1928), no. 1, 565–606. MR**1544927**, 10.1007/BF01171116**[4]**J. A. Hempel, G. R. Morris, and N. S. Trudinger,*On the sharpness of a limiting case of the Sobolev imbedding theorem.*, Bull. Austral. Math. Soc.**3**(1970), 369–373. MR**0280998****[5]**I. I. Hirschman Jr.,*A convexity theorem for certain groups of transformations*, J. Analyse Math.**2**(1953), 209–218. MR**0057936****[6]**J. Moser,*A sharp form of an inequality by N. Trudinger*, Indiana Univ. Math. J.**20**(1970/71), 1077–1092. MR**0301504****[7]**L. Nirenberg,*On elliptic partial differential equations*, Ann. Scuola Norm. Sup. Pisa (3)**13**(1959), 115–162. MR**0109940****[8]**S. L. Sobolev,*On a theorem of functional analysis*, Mat. Sb.**4**(**46**) (1938), 471-497; English transl., Amer. Math. Soc. Transl. (2)**34**(1963), 39-68.**[9]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[10]**Robert S. Strichartz,*A note on Trudinger’s extension of Sobolev’s inequalities*, Indiana Univ. Math. J.**21**(1971/72), 841–842. MR**0293389****[11]**Neil S. Trudinger,*On imbeddings into Orlicz spaces and some applications*, J. Math. Mech.**17**(1967), 473–483. MR**0216286**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E30,
46E35

Retrieve articles in all journals with MSC: 46E30, 46E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1972-0312232-4

Article copyright:
© Copyright 1972
American Mathematical Society