TOEPLITZ OPERATORS AND DIFFERENTIAL EQUATIONS ON A HALF-LINE1

J. W. MOELLER

Abstract. Let \mathcal{H} be a separable Hilbert space, let A_0, A_1, \cdots, A_n denote bounded linear operators from \mathcal{H} into \mathcal{H}, and let \mathcal{D} represent the set of all functions in $L^2(0, \infty; \mathcal{H})$ whose first n derivatives belong to $L^2(0, \infty; \mathcal{H})$. Suppose further that the space \mathcal{D} is equipped with an inner product inherited from $L^2(0, \infty; \mathcal{H})$.

The main result of this note states that the differential operator

$$L = \frac{d^n}{dt^n} + \frac{d^{n-1}}{dt^{n-1}} + \cdots + A_1 \frac{d}{dt} + A_0$$

acting on \mathcal{D} is continuously invertible if and only if the operator

$$P(\sigma) = \sum A_k^* \sigma^k \quad (0 \leq k \leq n)$$

acting on the Hilbert space \mathcal{H} has a uniformly bounded inverse everywhere in the open half-plane $\text{Re} \sigma < 0$.

Let \mathcal{H} be a separable Hilbert space, and let A_0, A_1, \cdots, A_n denote bounded linear operators from \mathcal{H} into \mathcal{H}. In what follows we will obtain necessary and sufficient conditions to insure the continuous invertibility of the differential operator

$$L = \frac{d^n}{dt^n} + \frac{d^{n-1}}{dt^{n-1}} + \cdots + A_1 \frac{d}{dt} + A_0$$

acting on a dense manifold of the Hilbert space $L^2(0, \infty; \mathcal{H})$.

Our approach to this problem is based on the observation that L is unitarily equivalent to a generalized Toeplitz operator. The inversion theory of these operators was recently developed by Rabindranathan [5], who systematically extended the previous work of Widom [7], Devinatz [1], and Pousson [4]. Hereafter we will freely use the terminology, as well as some of the theory, contained in Rabindranathan's paper.

To expose the connections between L and a generalized Toeplitz operator, we first construct a special isometric mapping from $L^2(0, \infty; \mathcal{H})$.

1 Work supported by NSF Grant GP-24917.
onto $H^2(\mathcal{H})$, the Hardy space of \mathcal{H}-valued analytic functions defined on the interior of the unit disc. This is accomplished by taking the Laguerre functions

$$g_n(t) = \frac{1}{n!} \exp \left(\frac{t}{2} \right) \frac{d^n}{dx^n} \left[t^n \exp(-t) \right]$$

and then defining $J(g_n \varphi) = z^n \varphi$, $n = 0, 1, \ldots$, for all $\varphi \in \mathcal{H}$. Since the Laguerre functions constitute an orthonormal basis for $L^2(0, \infty)$, the map J may be extended linearly as an isometry from $L^2(0, \infty; \mathcal{H})$ onto $H^2(\mathcal{H})$. In the scalar case where $\dim \mathcal{H} = 1$, this mapping was employed by the author to study differentiability properties of exponential sums [3], and it also occurs in Rosenblum’s earlier work on selfadjoint Toeplitz operators [6].

From the definition of a Laguerre function we deduce that

$$-2 \frac{dg_n}{dt}(t) = g_n(t) + 2 \sum_{k=0}^{n-1} g_k(t) \quad (0 \leq k \leq n - 1),$$

and a short computation reveals the important identity

$$(2) \quad 2JDN^{-1} = (T + I)(T - I)^{-1},$$

where

$$(Tf)(z) = z^{-1}(f(z) - f(0))$$

and

$$(Dg)(t) = \lim_{h \to 0} h^{-1}(g(t + h) - g(t)).$$

This last limit is taken with respect to the norm topology on $L^2(0, \infty; \mathcal{H})$. Since the open unit disc comprises the point spectrum of T, the right side of (2) is well defined on the range of $T - I$, a set whose closure is all of $H^2(\mathcal{H})$ because it contains every vector-valued polynomial

$$p(z) = \varphi_n z^n + \varphi_{n-1} z^{n-1} + \cdots + \varphi_1 z + \varphi_0$$

with coefficients in \mathcal{H}.

If A is an operator from \mathcal{H} into \mathcal{H}, we designate its natural extension \hat{A} on $H^2(\mathcal{H})$ by writing

$$(\hat{A}f)(z) = \sum (A \varphi_n) z^n, \quad n = 0, 1, 2, \ldots,$$

whenever $f(z) = \sum \varphi_n z^n$. Clearly \hat{A} commutes with T, and the substitution of (2) into (1) yields

$$(3) \quad JLJ^{-1} = \sum 2^{-k} \hat{A}_k (T + I)^k (T - I)^{-k} \quad (0 \leq k \leq n).$$
We infer from (3) that L has a bounded inverse if and only if the operator
\[S = (T - I)^{-n} \sum 2^{-k} \hat{A}_k(T + I)^k(T - I)^{n-k} \quad (0 \leq k \leq n) \]
shares this property too.

A more effective method for determining the continuous invertibility of S may be obtained by examining the adjoint operator S^*. Since
\[(T^*f)(z) = zf(z) \quad \text{and} \quad (\hat{A}^*f)(z) = \sum (A^*\varphi_n)z^n, \]
a standard calculation involving the adjoint of a densely defined operator [2, p. 69] shows that
\[(S^*f)(z) = R(z)f(z) \]
where
\[R(z) = \sum 2^{-k} A^*_k(z + 1)^k(z - 1)^{-k} \quad (0 \leq k \leq n). \]

According to a well-known result (Lemma 4.2 in [5]), S^* has a bounded inverse if and only if there exists an analytic Toeplitz operator $Q(z) = \sum Q_n z^n$, $n = 0, 1, \cdots$, defined on the interior of the unit disc such that
\[R(z)Q(z) = Q(z)R(z) = I \quad \text{and} \quad \sup_{|z|<1} \|Q(z)\| < \infty. \]

With this information at hand, it is possible to enunciate a simple invertibility criterion.

Theorem. Let \mathcal{H} be a separable Hilbert space, let A_0, A_1, \cdots, A_n denote bounded linear operators from \mathcal{H} into \mathcal{H}, and let \mathcal{D} represent the set of all functions in $L^2(0, \infty; \mathcal{H})$ whose first n derivatives lie in $L^2(0, \infty; \mathcal{H})$. Suppose further that \mathcal{D} is endowed with the inner product inherited from $L^2(0, \infty; \mathcal{H})$. Then the differential operator
\[L = A_n \frac{d^n}{dt^n} + A_{n-1} \frac{d^{n-1}}{dt^{n-1}} + \cdots + A_1 \frac{d}{dt} + A_0 \]
acting on \mathcal{D} has a bounded inverse if and only if the operator
\[P(\sigma) = \sum A_k^* \sigma^k \quad (0 \leq k \leq n) \]
acting on the Hilbert space \mathcal{H} has a uniformly bounded inverse everywhere in the open half-plane $\Re \sigma < 0$.

Proof. According to the arguments advanced before the derivation of (3), L has a bounded inverse if and only if the operator S enjoys the same property. It follows from elementary Hilbert space theory that L has a bounded inverse if and only if the adjoint operator S^* defined by (5) has a
bounded inverse on $H^2(\mathcal{K})$. Moreover, since the linear fractional transformation $z = (2\sigma + 1)(2\sigma - 1)^{-1}$ maps the half-plane $\text{Re} \sigma < 0$ onto the disc $|z| < 1$, we see from Rabindranathan's lemma that S^* has a bounded inverse if and only if the operator-valued polynomial

$$R \left(\frac{2\sigma + 1}{2\sigma - 1} \right) = \sum A_k^* \sigma^k = P(\sigma)$$

has an analytic inverse which is uniformly bounded everywhere in the half-plane $\text{Re} \sigma < 0$. But the inverse of an operator-valued polynomial is clearly analytic, and this completes the proof.

A special case of our theorem deserves attention because of its utility in the study of matrix differential equations.

Corollary. When the dimension of \mathcal{K} is finite, L has a bounded inverse if and only if the determinant of $P(\sigma)$ has no zeros in the closed left half-plane.

One final remark should be made at this point: It seems quite probable that our techniques can be extended to cope with differential equations having *unbounded* coefficients. Some results in this direction are now being prepared for later publication.

Acknowledgement. The author is deeply indebted to the referee for catching an error in the original version of this note.

References