Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On restricted uniqueness for systems of ordinary differential equations


Authors: J. M. Bownds and J. B. Díaz
Journal: Proc. Amer. Math. Soc. 37 (1973), 100-104
MSC: Primary 34A10
DOI: https://doi.org/10.1090/S0002-9939-1973-0304739-1
MathSciNet review: 0304739
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A uniqueness theorem is proved, for not necessarily Lipschitzian systems of ordinary differential equations, $ y' = f$. This theorem compares with one of Okamura and Murakami, in that, here, at the expense of assuming a certain additional smoothness for f on open sets, no assumption is made regarding the existence of an auxiliary positive definite (Lyapunov) function. An example compares the relative applicability of the two theorems.


References [Enhancements On Off] (What's this?)

  • [1] H. Okamura, Condition nécessaire et suffisante remplie par les équations différentielles ordinaires sans points de Peano, Mem. Coll. Sci. Kyoto Imp. Univ. Ser. A. 24 (1942), 21-28. MR 7, 442. MR 0015590 (7:442g)
  • [2] H. Murakami, On non-linear ordinary and evolution equations, Funkcial. Ekvac. 9 (1966), 151-162. MR 35 #514. MR 0209617 (35:514)
  • [3] V. Lakshmikantham and S. Leela, Differential and integral inequalities. Vol. II, Academic Press, New York, 1969.
  • [4] F. Brauer and S. Sternberg, Local uniqueness, existence in the large, and the convergence of successive approximations, Amer. J. Math. 80 (1958), 421-430. MR 20 #1806. MR 0095303 (20:1806)
  • [5] F. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485-523. MR 30 #4167. MR 0173960 (30:4167)
  • [6] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208-234. MR 15, 437. MR 0058861 (15:437b)
  • [7] J. Bownds, A uniqueness theorem for $ y' = f(x,y)$ using a certain factorization of f, J. Differential Equations 7 (1970), 227-231. MR 0254305 (40:7514)
  • [8] A. W. Hales, G. R. Sells and N. J. Fine, Multiple solutions of a differential equation (Problems and solutions), Amer. Math. Monthly 73 (1966), 672. MR 1533869
  • [9] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A10

Retrieve articles in all journals with MSC: 34A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0304739-1
Keywords: Ordinary differential equations, initial-value problems, uniqueness, Lyapunov functions
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society