ON THE ARENS PRODUCT AND COMMUTATIVE BANACH ALGEBRAS

PAK-KEN WONG

Abstract. The purpose of this note is to generalize two recent results by the author for commutative Banach algebras. Let A be a commutative Banach algebra with carrier space X_A and π the canonical embedding of A into its second conjugate space A^{**} (with the Arens product). We show that if A is a semisimple annihilator algebra, then $\pi(A)$ is a two-sided ideal of A^{**}. We also obtain that if A is a dense two-sided ideal of $C_0(X_A)$, then $\pi(A)$ is a two-sided ideal of A^{**} if and only if A is a modular annihilator algebra.

1. Notation and preliminaries. Notation and definition not explicitly given are taken from Rickart's book [5].

For any subset E of a Banach algebra A, let $L_A(E)$ and $R_A(E)$ denote the left and right annihilators of E in A, respectively. Then A is called a modular annihilator algebra if, for every maximal modular left ideal I and for every maximal modular right ideal J, we have $R_A(I)=(0)$ if and only if $I=A$ and $L_A(J)=(0)$ if and only if $J=A$ (see [2, p. 568, Definition]).

Let A be a Banach algebra, A^* and A^{**} the conjugate and second conjugate spaces of A, respectively. The Arens product on A^{**} is defined in stages according to the following rules (see [1]). Let $x, y \in A, f \in A^*, F, G \in A^{**}$.

(a) Define $f \circ x$ by $(f \circ x)(y)=f(xy)$. Then $f \circ x \in A^*$.

(b) Define $G \circ f$ by $(G \circ f)(x)=G(f \circ x)$. Then $G \circ f \in A^*$.

(c) Define $F \circ G$ by $(F \circ G)(f)=F(G \circ f)$. Then $F \circ G \in A^{**}$.

A^{**} with the Arens product \circ is denoted by (A^{**}, \circ). Let π be the canonical embedding of A into A^{**}. Then $\pi(A)$ is a subalgebra of (A^{**}, \circ).

Let A be a Banach algebra. For each element $x \in A$, let $Sp_A(x)$ denote the spectrum of x in A. If A is commutative, X_A will denote the carrier space of A and $C_0(X_A)$ the algebra of all complex-valued continuous functions on X_A, which vanish at infinity; $C_0(X_A)$ is a commutative B^*-algebra.

In this paper, all algebras and linear spaces under consideration are over the complex field C.
2. The results. Our first result is a generalization of [7, p. 82, Theorem 3.3] for commutative Banach algebras.

Theorem 2.1. Let A be a semisimple commutative annihilator Banach algebra. Then A is a two-sided ideal of (A^{**}, \circ).

Proof. Let X_A be the carrier space of A and let $B = C_0(X_A)$. Since A is an annihilator algebra, it is well known that X_A is discrete and therefore B is a dual B^*-algebra by [6, p. 532, Theorem 4.2]. Let $|\cdot|$ be the norm on B. Then the given norm $||\cdot||$ majorizes $|\cdot|$ on A. Considering A as a subalgebra of B, we show that A is dense in B. Let $x \not= 0$ be a hermitian element in B. Then it is known that $\text{Sp}_B(x)$ has no nonzero limit points and so it is a countable set (see [8, p. 826, Theorem 3.1]). Therefore it follows from [5, p. 111, Theorem (3.1.6)] that $\{\alpha(x) : \alpha \in X_A\}$ is countable. Denote those $\alpha \in X_A$ for which $\alpha(x) \not= 0$ by $\alpha_1, \alpha_2, \ldots$. Then $\alpha_n(x) \to 0$ as $n \to \infty$. For each α_n, by Silov’s theorem [5, p. 168, Theorem (3.6.3)], there exists a nonzero idempotent e_n in A such that $e_n(\alpha_n) = 1$ and $e_n(\alpha) = 0$ for all $\alpha \not= \alpha_n$.

Let $\varepsilon > 0$ be given. Then there exists a positive integer N such that $|\alpha_n(x)| < \varepsilon$ for all $n \geq N$. Let $y = \sum_{n=1}^{N} \alpha_n(x)e_n$. Then $y \in A$ and it is easy to see that

$$|x - y| = \sup\{|\alpha(x) - \alpha(y)| : \alpha \in X_A\} < \varepsilon.$$

Therefore it follows now that A is dense in B. Since A is a dual B^*-algebra, by [7, p. 82, Theorem 3.3], B is a two-sided ideal of B^{**} (with the Arens product). Therefore, by [7, p. 82, Lemma 3.2], A is a two-sided ideal of (A^{**}, \circ) and the proof is complete.

The following result is a generalization of [8, p. 830, Theorem 5.2] for commutative Banach algebras.

Theorem 2.2. Let A be a commutative Banach algebra such that A is a dense two-sided ideal of $C_0(X_A)$. Then A is a two-sided ideal of (A^{**}, \circ) if and only if A is a modular annihilator algebra.

Proof. Let $B = C_0(X_A)$ and let $|\cdot|$ be the norm on B. By [3, p. 3, Theorem 2.3], there exists a constant k such that $|ab| \leq k|a| |b|$ and $|ab| \leq k|a| |b|$ for all $a, b \in A$. It is easy to see that A is a semisimple algebra. Suppose A is a two-sided ideal of (A^{**}, \circ). Then by the proof of [8, p. 829, Lemma 5.1], we can show that X_A is discrete and therefore A is a modular annihilator algebra (see [2, p. 578, Example 8.4]). Conversely suppose A is a modular annihilator algebra. Then, by [2, p. 569, Theorem 4.2 (6)], X_A is discrete in the hull-kernel topology and therefore X_A is discrete in the finer Gelfand topology. Hence B is a dual B^*-algebra. Now by the argument in [8, p. 830, Theorem 5.2], we can show that A is a two-sided ideal of (A^{**}, \circ), and this completes the proof.
Corollary 2.3. Let A be as in Theorem 2.2. If A is reflexive and has an approximate identity, then A is finite dimensional.

Proof. By [4, p. 855, Lemma 3.8], A has an identity element. Also it follows from Theorem 3.2 that A is a modular annihilator algebra and therefore it is finite dimensional by [2, p. 573, Proposition 6.3].

Let G be a compact abelian group with the Haar measure and let $A = L_2(G)$. Then it is well known that A is reflexive and A is a dense two-sided ideal of $C_0(X_A)$. Also if A is infinite dimensional, A has no approximate identity.

References

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

Current address: Department of Mathematics, Seton Hall University, South Orange, New Jersey 07079