A CHARACTERIZATION OF DUAL B^*-ALGEBRAS

EDITH A. McCHAREN

ABSTRACT. Let A be a B^*-algebra. The second conjugate space of A, denoted by A^{**}, is a B^*-algebra under the Arens multiplication. A new proof is given that A is a dual algebra if and only if the natural image of A in A^{**} is an ideal in A^{**}.

In this note we present an alternate proof to the following result of B. J. Tomiuk and Pak-Ken Wong [1].

THEOREM. Let A be a (complex) B^*-algebra, A^{**} be its second conjugate space and π the canonical imbedding of A into A^{**}. Then A is a dual algebra if and only if $\pi(A)$ is an ideal in A^{**} with respect to the Arens multiplication.

PROOF. For each $a \in A$ let L_a and R_a denote the operators on A defined by $L_a(x) = ax$ and $R_a(x) = xa$. If A^* denotes the conjugate space of A, let $L_a^*: A^* \to A^*$ denote the transpose of L_a defined by $L_a^*(f)(x) = f(L_a(x)) (f \in A^*, x \in A)$. The second transpose of L_a is then the mapping $L_a^{**}: A^{**} \to A^{**}$ defined by $L_a^{**}(F)(f) = F(L_a^*(f)) (F \in A^{**}, f \in A^*)$. Let R_a^* denote the second transpose of R_a defined similarly.

Then A is a dual algebra if and only if L_a and R_a are weakly compact operators for each $a \in A$ [2, p. 99]. By the generalized Gantmacher theorem [3, pp. 624-625], L_a and R_a ($a \in A$) are weakly compact if and only if $L_a^{**}(A^{**}) \cup R_a^{**}(A^{**}) \subseteq \pi(A)$. Let \ast denote the Arens multiplication in A^{**}. It follows from the definition of this multiplication (see [1, p. 530]) that $L_a^*(F) = \pi(a) \ast F$ and $R_a^*(F) = F \ast \pi(a)$ for all $F \in A^{**}$, and therefore $L_a^{**}(A^{**}) \cup R_a^{**}(A^{**}) = \pi(a) \ast A^{**} \cup A^{**} \ast \pi(a)$, which completes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115

Received by the editors September 28, 1970 and, in revised form, May 13, 1971.