ADJOINTS OF MULTIPOINT-INTEGRAL BOUNDARY VALUE PROBLEMS

R. C. BROWN AND ALLAN M. KRALL

Abstract. The dual system to \(L y = y' + P y, \)
\[
\sum_{i=0}^{\infty} A_i y(t_i) + \int_0^1 K(t) y(t) \, dt = 0
\]
is found when the setting is \(L^p_{\infty}(0, 1), 1 < p < \infty. \)

Introduction. Let \(X \) denote the Banach space \(L^p_{\infty}(0, 1) \), consisting of \(n \)-dimensional vectors under the norm
\[
\| x \| = \left(\int_0^1 \left\{ \sum_{i=1}^{n} |x_i(t)|^2 \right\}^{p/2} \, dt \right)^{1/p},
\]
\(1 < p < \infty. \) In \(X \) and \(X^* (= L^p_{\infty}(0, 1), 1/p + 1/q = 1) \) let us define the following subspaces:

(a) Let \(D' \) denote those vectors in \(X \) which are absolutely continuous.
(b) Let \(D^+_q \) denote those vectors in \(X^* \) which are absolutely continuous and vanish at \(t=0, \ t=1. \)
(c) Let \(A_i, i=0, \ldots, \) be \(m \times n \) constant matrices satisfying \(\sum_{i=0}^{\infty} \| A_i \| < \infty \) (\(\| \cdot \| \) here denotes a convenient norm) and \(\bigcap_{i=0}^{\infty} \ker A^*_i = 0. \) Let \(\{ t_i \}_{i=0}^{\infty} \) be a collection of points in \([0, 1] \) \((t_0=0, \ t_1=1) \), and let \(K(t) \) be an \(m \times n \) matrix valued function whose rows are in \(X^*. \) For all \(y \) in \(D' \) we define the (discontinuous) boundary functional \(V \) by
\[
Vy = \sum_{i=0}^{\infty} A_i y(t_i) + \int_0^1 K(t) y(t) \, dt,
\]
and denote by \(D \) the kernel of this functional. \(Vy=0 \) for all \(y \in D. \)
(d) Let \(D^+_z \) denote those vectors \(z \) in \(X^* \) for which there exists an \(m \times 1 \) matrix valued functional \(\phi(z) \) such that
(1) \(z(t) + \sum_{i=0}^{\infty} A_i^* \phi(z) \lambda(t_i, 1) \) is absolutely continuous on \([0, 1]. \)
(\(\lambda(t_i, 1) \) is the characteristic function of \((t_i, 1). \))

Presented to the Society, January 18, 1972; received by the editors November 1, 1971 and, in revised form, March 20, 1972.

AMS (MOS) subject classifications (1970). Primary 34B05, 34B10, 34B25; Secondary 44A60.

© American Mathematical Society 1973
214

R. C. BROWN AND A. M. KRALL

January

(2) If \(P(t) \) is a continuous \(n \times n \) matrix valued function, then the expression

\[
I^+z = -z' + P^*z + K^*\phi(z)
\]

exists a.e. and is in \(X^* \).

We note that \(\phi \) is uniquely defined, for if two such \(\phi, \phi_1 \) and \(\phi_2 \), exist, then by subtraction \(\sum_{t_0}^{t_1} A^*_t(\phi_1 - \phi_2)\lambda(t, 1) \) would be absolutely continuous. This is impossible. Further note that the range of \(\phi \) is all of \(R^n \), that \(D^+_0 \subset D^+ \), and that \(\phi(z) = 0 \) if and only if \(z \in D^+_0 \). Hence \(D^+ \) is non-empty.

Finally, letting \(ly = y + Py \), \(l^+z \) as given above, we define the following operators:

(a) \(L' \) is given by \(L'y = ly \) for all \(y \) in \(D' \).
(b) \(L^+_0 \) is given by \(L^+_0z = l^+z \) for all \(z \) in \(D^+_0 \).
(c) \(L \) is given by \(Ly = ly \) for all \(y \) in \(D \).
(d) \(L^+ \) is given by \(L^+z = l^+z \) a.e. for all \(z \) in \(D^+ \).

Our principal result is that \(L \) and \(L^+ \) are dual operators. Brown [1] has previously shown that \(D \) is dense in \(X \), so \(L^* \) exists. Further Bryan [2] used \(L^+ \) as the basis of a definition of \(L^* \). The result is well known under the classical endpoint conditions. However, because of the possible density of the boundary points \(\{t_i\} \) in the interval \([0, 1] \), the techniques now used are different from those used previously.

The result also generalizes similar results recently obtained by Green and Krall [4] and Krall [5].

The closure of \(L^+ \).

Theorem 1. The operator \(L^+ \), defined by \(L^+z = -z' + P^*z + K^*\phi(z) \), for all \(z \in D^+ \), is closed.

Proof. We recall that the operator \(L^+ \) is closed if when \(\lim_{k \to \infty} z_k = z \) (\(z_k \in D^+ \)), and \(\lim_{k \to \infty} L^+z_k = y \), then \(z \in D^+ \), and \(L^+z = y \).

Let \(\varepsilon(s) = \sum_{t_0}^{t_1} A^*_t\lambda(t, 1)(s) \). Then

\[
zk(s) - z_l(s) = \int_0^s (z'_k - z'_l) \, d\xi + \varepsilon(s)\phi(z_l - z_k)
\]

\[
= \int_0^s L^+(z_l - z_k) \, d\xi + \int_0^s P^*(z_k - z_l) \, d\xi
\]

\[
+ \left[\int_0^s K^* \, d\xi - \varepsilon(s) \right] \phi(z_k - z_l).
\]

Since

\[
\left\| \int_0^s L^+(z_l - z_k) \, d\xi \right\|_{X^*} \leq \left\| L^+(z_l - z_k) \right\|_{X^*}
\]

and

\[
\left\| \int_0^s P^*(z_k - z_l) \, d\xi \right\|_{X^*} \leq \left\| P^* \right\| \left\| z_k - z_l \right\|_{X^*}
\]
by Hölder's inequality, we have
\[\left\| \int_0^s K^* d\xi - \epsilon(s) \right\|_{\mathcal{X}^*} \leq \|z_k - z_l\|_{\mathcal{X}^*} + \|P^*\| \|z_l - z_k\|_{\mathcal{X}^*} + \|L^*(z_l - z_k)\|_{\mathcal{X}^*}. \]

By assumption, each of the terms on the right approaches 0 as \(k, l \) approach \(\infty \). Therefore the functions
\[F_k(s) = \left(\int_0^s K^* d\xi - \epsilon(s) \right) \phi(z_k) \]
converge in measure. Hence there is a subsequence \(F_{k_l}(s) \) which converges almost everywhere. Letting \(s \) approach \(t \) from above and below implies \(F_{k_i}(t_i) - F_{k_j}(t_j) = A^*_i \phi_{k_i} \) converges. Therefore \(\phi_{k_i} - \phi_{k_j} \), approaches the kernel of \(A^*_i \) as \(k_i, k_j \) approach \(\infty \). Since this holds for all \(i \), and \(\bigcap_{i=0}^\infty \text{ker } A^*_i = 0 \), we conclude that \(\phi_{k_i} - \phi_{k_j} \) approaches 0. In other words \(\phi_{k_i} \) converges.

Since
\[z_k(s) = -\int_0^s L^+ z_{k_i} d\xi + \int_0^s P^* z_{k_i} d\xi + \left[\int_0^s K^* d\xi - \epsilon(s) \right] \phi(z_k) \]
and \(\phi(z_k) \) converges, we may take limits to find
\[z(s) = -\int_0^s y d\xi + \int_0^s P^* z d\xi + \left[\int_0^s K^* d\xi - \epsilon(s) \right] \phi, \]
or
\[z(s) + \epsilon(s) \phi = -\int_0^s y d\xi + \int_0^s P^* z d\xi + \int_0^s K^* d\xi \phi. \]

Since the right is absolutely continuous, \(z \) satisfies the first requirement of elements in \(D^+ \). Differentiating, we find \(z' = -y + P^* z + K^* \phi \), or \(y = l^+ z \) a.e., the second condition.

The duals of \(L \) and \(L^+ \). Let us denote the dual of an operator \(A \) by \(A^* \).

Lemma. \((L^+_0)^* = L'\).

Proof. This is well known. See Goldberg [3, p. 51].

Theorem 2. \((L^+)^* = L\).

1 The matrix \(A^*_i \) defines an isomorphism \(f_i \) from the factor space \(R^m/\ker A^*_i \) onto the range of \(A^*_i \). Thus \(A^*_i \phi_k \) approaches 0 if and only if \(\phi_k + \ker A^*_i \) approaches \(\ker A^*_i \).
PROOF. Trivial modifications of a computation found in Green and Krall [4] show that if \(y \in D \) and \(z \in D^+ \), then

\[
(Ly, z) - (y, L^+z) = \int_0^1 [z^*(Ly) - (L^+z)^*y] \, ds
\]

\[
= -\phi^*(z) \left[\sum_{i=0}^{\infty} A_i y(t_i) + \int_0^1 Ky \, ds \right] = 0.
\]

Thus \(L \subseteq (L^+)^* \).

To show the reverse inclusion, let \(z \in D_0^+ \). Then, since \(D_0^+ \subseteq D^+ \) and \(\phi(z) = 0 \), we find \(L_0^+ \subseteq L^+ \). This implies \((L^+)^* \subseteq (L_0^+)^* = L' \). Hence the domain of \((L^+)^* \) is contained in \(D \).

For arbitrary \(z \in D^+ \), the calculation of the first part of the proof shows

\[
\phi^*(z) \left[\sum_{i=0}^{\infty} A_i y(t_i) + \int_0^1 Ky \, ds \right] = 0.
\]

Since the range of \(\phi \) is \(\mathbb{R}^m \), it is the term in brackets which vanishes. Thus the domain of \((L^+)^* \) satisfies the boundary condition and is in \(D \). Therefore \((L^+)^* \subseteq L \), and the two are equal.

Theorem 3. \(L^* = L^+ \).

Proof. Since \(L^+ \) is closed by Theorem 1, \((L^+)^** = L^+ \). But since \((L^+)^* = L \) by Theorem 2, we find \(L^* = (L^+)^** = L^+ \).

References

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Current address (R. C. Brown): Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706