Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Frattini subgroups of certain generalized free products of groups


Author: C. Y. Tang
Journal: Proc. Amer. Math. Soc. 37 (1973), 63-68
MSC: Primary 20F25
DOI: https://doi.org/10.1090/S0002-9939-1973-0310073-6
MathSciNet review: 0310073
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G = (\prod\nolimits_{i \in I}^\ast {{A_i}{)_H}} $ be the generalized free product of the groups $ {A_i}$ amalgamating the subgroup H. We show that if G is residually finite and the groups $ {A_i}$ have compatible H-filters then the Frattini subgroup $ \Phi (G)$ is contained in the maximal G-normal subgroup in H. If the groups $ {A_i}$ are free and H is finitely generated of infinite index in one $ {A_i}$ then $ \Phi (G) = 1$. We also show that if H is simple then $ \Phi (G) = 1$ or $ {H^G}$.


References [Enhancements On Off] (What's this?)

  • [1] G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209. MR 26 #2489. MR 0144949 (26:2489)
  • [2] D. Ž. Djoković and C. Y. Tang, On the Frattini subgroup of the generalized free product with amalgamation, Proc. Amer. Math. Soc. 32 (1972), 21-23. MR 0289656 (44:6844)
  • [3] J. L. Dyer, On the residual finiteness of generalized free products, Trans. Amer. Math. Soc. 133 (1968), 131-143. MR 38 #5930. MR 0237649 (38:5930)
  • [4] R. J. Gregorac, On residually finite generalized free products, Proc. Amer. Math. Soc. 24 (1970), 553-555. MR 41 #5498. MR 0260878 (41:5498)
  • [5] G. Higman and B. H. Neumann, On two questions of Itô, J. London Math. Soc. 29 (1954), 84-88. MR 15, 286. MR 0057881 (15:286g)
  • [6] A. Karrass and D. Solitar, On finitely generated subgroups of a free group. Proc. Amer. Math. Soc. 22 (1969), 209-213. MR 39 #6961. MR 0245655 (39:6961)
  • [7] B. H. Neumann, An essay on free products with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503-544. MR 16, 10. MR 0062741 (16:10d)
  • [8] A. Whittemore, On the Frattini subgroup, Trans. Amer. Math. Soc. 141 (1969), 323-333. MR 39 #6993. MR 0245687 (39:6993)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F25

Retrieve articles in all journals with MSC: 20F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0310073-6
Keywords: Frattini subgroup, free group, simple group, generalized free product, amalgamated subgroup, residually finite, H-filter, G-normal, identical relation
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society