-minimal solutions of on open Riemann surfaces

Author:
Wellington H. Ow

Journal:
Proc. Amer. Math. Soc. **37** (1973), 85-91

MSC:
Primary 30A48

DOI:
https://doi.org/10.1090/S0002-9939-1973-0310233-4

MathSciNet review:
0310233

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By means of the Royden compactification of an open Riemann surface *R* necessary and sufficient conditions are given for a Dirichlet-finite solution of to be *PD*-minimal on *R*. A relation between *PD*-minimal solutions and *HD*-minimal solutions is obtained. In addition it is shown that the dimension of the space of *PD*-solutions is the same as the number of *P*-energy nondensity points in the finite dimensional case.

**[1]**Moses Glasner and Richard Katz,*The Royden boundary of a Riemannian manifold*, Illinois J. Math.**14**(1970), 488–495. MR**0262973****[2]**-,*On the behavior of solutions of**at the Royden boundary*, J. Analyse Math.**22**(1969), 345-354. MR**41**#1995.**[3]**Y. K. Kwon, L. Sario, and J. Schiff,*The 𝑃-harmonic boundary and energy-finite solutions of Δ𝑢=𝑃𝑢*, Nagoya Math. J.**42**(1971), 31–41. MR**0288696****[4]**Y. K. Kwon, L. Sario, and J. Schiff,*Bounded energy-finite solutions of Δ𝑢=𝑃𝑢 on a Riemannian manifold*, Nagoya Math. J.**42**(1971), 95–108. MR**0287485****[5]**Mitsuru Nakai,*The space of Dirichlet-finite solutions of the equation Δ𝑢=𝑃𝑢 on a Riemann surface*, Nagoya Math. J.**18**(1961), 111–131. MR**0123705****[6]**Mitsuru Nakai,*The space of non-negative solutions of the equation Δ𝑢=𝑝𝑢 on a Riemann surface*, Kōdai Math. Sem. Rep.**12**(1960), 151–178. MR**0123704****[7]**Mitsuru Nakai,*Dirichlet finite solutions of Δ𝑢=𝑃𝑢, and classification of Riemann surfaces*, Bull. Amer. Math. Soc.**77**(1971), 381–385. MR**0293083**, https://doi.org/10.1090/S0002-9904-1971-12705-2**[8]**Mitsuru Nakai,*Dirichlet finite solutions of Δ𝑢=𝑃𝑢 on open Riemann surfaces*, Kōdai Math. Sem. Rep.**23**(1971), 385–397. MR**0304647****[9]**Mitsuru Ozawa,*Classification of Riemann surfaces*, Kōdai Math. Sem. Rep.**4**(1952), 63–76. {Volume numbers not printed on issues until Vol. 7 (1955).}. MR**0051322****[10]**H. L. Royden,*The equation Δ𝑢=𝑃𝑢, and the classification of open Riemann sufaces*, Ann. Acad. Sci. Fenn. Ser. A I No.**271**(1959), 27. MR**0121477****[11]**L. Sario and M. Nakai,*Classification theory of Riemann surfaces*, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR**0264064****[12]**I. J. Singer,*Image set of reduction operator for Dirichlet finite solutions of*, Proc. Amer. Math. Soc.**32**(1972), 464-468.**[13]**-,*Positiveness of the reducing kernel in the space PD*(*R*), Nagoya Math. J. (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30A48

Retrieve articles in all journals with MSC: 30A48

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1973-0310233-4

Keywords:
Royden harmonic boundary,
*P*-energy nondensity point,
harmonic projection,
*PD*-minimal function,
*HD*-minimal function,
Riesz decomposition

Article copyright:
© Copyright 1973
American Mathematical Society