ZARISKI’S THEOREM ON SEVERAL LINEAR SYSTEMS

ARTHUR OGUS

Abstract. We give a modern and fairly easy proof of (a slight improvement of) an important theorem of Zariski. The result gives conditions under which certain multigraded rings and modules associated with \(n \) linear systems are finitely generated, in a very strong sense.

Suppose \(L \) is a line bundle on a complete scheme \(X \) and \(R \) is a graded subring of \(\bigoplus_{n \geq 0} H^0(X, L^n) \) whose degree one part generates \(L \). Then \(\bigoplus_{n \geq 0} H^0(X, L^n) \) is a finitely generated \(R \) module. Zariski has given a very useful souped-up version of this fact, working with several line bundles simultaneously [1, 5.1]. Since his proof is difficult for newly educated geometers to follow, it seems worthwhile to give a modern proof. That is the only purpose of this paper.

Before we state our slight improvement of Zariski’s theorem, we must make some definitions. By an “\(m \)-fold graded ring,” we mean a ring \(G \) together with a direct sum decomposition \(G = \bigoplus \{ G_\alpha : \alpha \in \mathbb{Z}_m \} \) such that the multiplication map factors through maps \(G_\alpha \otimes G_\beta \to G_{\alpha + \beta} \). We let \(e_i \in \mathbb{Z}_m \) be the element with 1 in the \(i \)th place and zeroes elsewhere. Let \(G' \) be the sub-\(G_0 \) algebra of \(G \) generated by terms of total degree 1.

1. Definition. Let \(G \) be an \(m \)-fold graded ring, \(M \) a graded \(G \) module, and \(\alpha \) an integer between 1 and \(m \). Then \(M \) is “\(\alpha \)-finite” if for some integer \(n \), the maps \(G_\alpha \times M_\alpha \to M_{\alpha + e_i} \) are surjective whenever \(\alpha_i \geq n \). If \(M \) is \(\alpha \)-finite for all \(\alpha \), we say \(M \) is “polyfinite.”

2. Proposition. If \(M \) is finitely generated as a \(G' \) module, it is polyfinite. The converse holds if we assume that each \(M_\alpha \) is finitely generated as a \(G_0 \) module and that \(M_\alpha = 0 \) for any \(\alpha \ll 0 \).

Proof. First prove the following easy statements:

2.1 If \(M \) is \(i \)-finite, so is the shifted module \(M(\alpha) \) for any \(\alpha \in \mathbb{Z}_m \).

2.2 If \(M \) and \(N \) are \(i \)-finite, so is \(M \oplus N \).

2.3 A quotient of an \(i \)-finite module is \(i \)-finite.
Now it is clear that G' is polyfinite as a module over itself, since all the maps $G'_{e_i} \times G'_{e_j} \to G'_{e_i+e_j}$ are surjective, if $\alpha_i \geq 0$. Moreover, any finitely generated graded G' module M is a quotient of a finite direct sum of modules $G'(\beta)$, one for each generator of degree $-\beta$. Thus, it is polyfinite as a G' module and hence as a G module.

To prove the converse, we see that if M is polyfinite, there is a $\beta \in \mathbb{Z}^m$ such that the maps $G'_{e_i} \times M_{e_j} \to M_{e_i+e_j}$ are surjective if $\alpha_i \geq \beta_i$. Then we easily see that $\bigoplus_{e \leq \beta} M_e$ generates M as a G' module. Since $\bigoplus_{e \leq \beta} M_e$ is finitely generated as a G_0 module, it generates a finite G' module, and the proof is complete. □

We can now state our version of Zariski’s theorem:

3. Theorem. Let F be a coherent sheaf on a scheme X, proper over a field k, and let L_1, \ldots, L_m be line bundles on X. Let Γ be an m-fold graded subring of $\bigoplus \{ H^0(X, L_{1}^{\otimes e_1} \otimes \cdots \otimes L_{m}^{\otimes e_m}) : \alpha \in \mathbb{Z}^m \text{ and } \alpha \geq 0 \}$, and let M be a graded Γ submodule of $\bigoplus_{e \geq 0} H^n(X, F \otimes L_{1}^{\otimes e_1} \otimes \cdots \otimes L_{m}^{\otimes e_m})$. If the linear system $F(e_i)$ has no base points for each i, then M is polyfinite.

Instead of proceeding directly with the proof of this theorem, we first consider what is essentially the universal case.

4. Proposition. Let k be a field, V_1, \ldots, V_m finite dimensional vector spaces over k, and $Z = \text{Spec } (V_1) \times \cdots \times (V_m)$. If F is a coherent sheaf on Z and if $\alpha \in \mathbb{Z}^m$, let $F(\alpha)$ be $F \otimes P_1^* (O_{\text{Spec } (V_1)}(\alpha_1)) \otimes \cdots \otimes P_m^* (O_{\text{Spec } (V_m)}(\alpha_m))$, where $p_i: Z \to \text{Spec } (V_i)$ is the projection. Then:

4.1 The natural map: $G = S'(V_1) \otimes \cdots \otimes S'(V_m) \to \bigoplus \alpha H^n(Z, O_Z(\alpha))$ is an isomorphism of m-fold graded rings.

4.2 $H^q(Z, O_Z(\alpha)) = 0$ if $q > 0$ and $\alpha \geq 0$.

4.3 $\bigoplus \{ H^q(Z, F(\alpha)) : \alpha \in \mathbb{Z}^m \text{ and } \alpha \geq 0 \}$ is a finitely generated G module, for all q.

4.4 If $q > 0$, $H^q(Z, F(\alpha)) = 0$ for all $\alpha > 0$.

Proof. If $m=1$, this is Serre’s theorem [2, p. 47]. We shall prove 4.1, 4.2, and 4.3 by induction on m, where 4.3’ is the statement 4.3 for F of the form $O_Z(\beta)$ for some $\beta \in \mathbb{Z}^m$. Assuming them proved for m and for Z with the same notation, we let V be another vector space and prove them for $Z \times \text{Spec } (V)$. In the diagram, all the maps are the natural ones. If

$$
\begin{array}{ccc}
Z \times \text{Spec } (V) & \xrightarrow{g} & \text{Spec } (V) \\
\downarrow f & & \downarrow h \\
Z & \xrightarrow{p} & \text{Spec } k
\end{array}
$$

$\alpha \in \mathbb{Z}^m$ and $v \in Z$, then $O_{Z \times \text{Spec } (V)}(\alpha, v) = f_* O_Z(\alpha) \otimes g_* O_V(v)$. By the base change formula, the natural map: $O_Z(\alpha) \otimes R^q f_* g_* O_V(v) \to R^q f_* O_{Z \times \text{Spec } (V)}(\alpha, v)$
is an isomorphism. Since our diagram is Cartesian and p is flat, the natural map: $p^*R^q\mathcal{O}_P(\nu)\to R^qf_*\mathcal{O}_P(\nu)$ is an isomorphism. Combining these with the base change formula for p, we get a natural isomorphism: $H^p(Z, O_Z(\alpha)) \otimes_k H^q(P, O_P(\nu)) \to H^p(Z, R^qf_*O_{Z\times P}(\alpha, \nu))$. By the induction hypothesis the map:

$$G_\mu \otimes S'(V) \to H^0(Z, O_Z(\alpha)) \otimes_k H^0(P, O_P(\nu)) \cong H^0(Z \times P, O_{Z\times P}(\alpha, \nu))$$

is an isomorphism, so 4.1 is proved. By induction, if $(\alpha, \nu) \geq 0$, we see that $H^p(Z, R^qf_*O_{Z\times P}(\alpha, \nu)) = 0$ if p or $q > 0$, so by the Leray spectral sequence, $H^q(Z \times P, O_{Z\times P}(\alpha, \nu)) = 0$ if $i > 0$, and 4.2 is proved. Finally, for any β and μ, $\bigoplus_{(\alpha, \nu) \geq 0} H^p(\nu, O_{Z\times P}(\alpha, \nu))$ is finite as a G module and

$$H^q(P, O_P(\mu + \nu))$$

is finite as an $S'(V)$ module, by the induction hypothesis; so their tensor product $\bigoplus_{(\alpha, \nu) \geq 0} H^p(Z, R^qf_*O_{Z\times P}(\beta + \alpha, \mu + \nu))$ is finite as a $G \otimes_k S'(V)$ module. Consequently the abutment $\bigoplus_{(\alpha, \nu) \geq 0} H^q(Z \times P, O_{Z\times P}(\beta + \alpha, \mu + \nu))$ is also finitely generated, so 4.3' is also proved.

To finish the proof, we recall that the Segre embedding [3, p. 93] shows that the sheaf $L = O_Z(1, \ldots, 1)$ is very ample on Z. Therefore any coherent F on Z is a quotient of a finite direct sum E of copies of L^i, for some v. Moreover, 4.3 and 4.4 are proved for E, and also for all q sufficiently large, since $H^q(Z, \nu. \nu, \ldots, \nu) = 0$ for $q > 0$. Now if $0 \to K \to E \to F \to 0$ is exact then we get exact sequences $H^q(Z, E(\alpha)) \to H^q(Z, F(\alpha)) \to H^{q+1}(Z, K(\alpha))$. Then the theorem for E and a descending induction hypothesis on E will imply our result for F. \(\Box\)

The proof of Theorem 3 is now quite easy. Let V_i be the (finite dimensional) k vector space Γ_{e_i}. Since V_i has no basepoints, there is a map $f_i: X \to P(V_i)$ such that $f^*_i O_{P(V_i)}(1) = L_i$. Then if $f: X \to Z$ is the induced map, $f^*O_x(\alpha) = L^i_1 \otimes \cdots \otimes L^i_n = L^i$. Since f is proper, the sheaves $R^qf_*\mathcal{F}$ are coherent on Z. Hence the G module $\bigoplus_{(\alpha, \nu) \geq 0} H^q(Z, R^qf_*\mathcal{F}(\alpha))$ is finitely generated, so is the abutment $\bigoplus_{(\alpha, \nu) \geq 0} H^q(Z, F(\alpha))$. Since G is noetherian, the G submodule M is also finitely generated. Finally, we note that $G_{e_i} = \Gamma_{e_i}$, so that by Proposition 2, M is polyfinite as a Γ module. This completes the proof. \(\Box\)

5. Corollary. Let H be ample on a projective scheme X, let L be a line bundle on X generated by its global sections, and let F be any coherent O_X module. Then there exists an integer J such that $H^q(X, F \otimes L^i \otimes H^n) = 0$ if $q > 0, i \geq 0$, and $j \geq J$.

Proof. Suppose H^n is very ample, so that if $\Gamma = \bigoplus_{i,j} H^0(S, L^i \otimes H^n)$, Γ satisfies the hypothesis of Theorem 3. We apply the theorem with
$F \otimes H^m$ in place of F, where $0 \leq m < n$, and conclude that each Γ module
$\bigoplus_{i,j} H^q(X, F \otimes L^i \otimes H^{j+n+m})$ is 1-finite. Hence there exists an integer I, independent of j, such that the map:

$$H^0(X, L) \otimes H^q(X, F \otimes L^{i-1} \otimes H^{j+n+m}) \rightarrow H^q(X, F \otimes L^i \otimes H^{j+n+m})$$

is surjective if $i \geq I$, $j \geq 0$, and $0 \leq m < n$. Since H^n is ample we can find J
such that $H^q(X, F \otimes L^i \otimes H^{j+n+m}) = 0$ if $q > 0$, $j \geq J$, $0 \leq m < n$, and $0 \leq i \leq I$, and it follows immediately by induction on i that $H^q(X, F \otimes L^i \otimes H^j) = 0$
if $i \geq 0$ and $j \geq n(J+1)$.

Remark. Zariski has proved [1, 6.2] that if $H^0(X, L)$ has only finitely
many base points, then $H^0(X, L^i)$ has no base points for i sufficiently
large, so we could weaken the hypothesis of the Corollary. His proof
makes essential use of Theorem 3, but since it is quite readable, I have
not included it here. I wish to thank the referee for filling a gap in my
proof of Corollary 5.

References

1. O. Zariski, *The theorem of Riemann-Roch for high multiples of an effective divisor
 MR 16, 953.

**Department of Mathematics, Harvard University, Cambridge, Massachusetts
02138**

Current address: Department of Mathematics, Princeton University, Princeton, New
Jersey 08540