SIMILARITY OF MATRICES OVER FINITE RINGS

J. POMFRET

Abstract. It is shown that questions of similarity of certain invertible matrices over a finite ring can be reduced to questions of similarity over finite fields through the application of canonical epimorphisms.

Suprunenko has shown in [3] that two invertible matrices over \mathbb{Z}/\mathbb{Z}_m whose orders are relatively prime to m are similar if and only if their canonical images are similar over the fields \mathbb{Z}/\mathbb{Z}_p for each prime divisor p of m. An analogous result holds for invertible matrices over any finite commutative ring with identity.

Preliminaries. If R is a finite commutative ring with identity, then R is uniquely a ring direct product of finite local rings [1, Theorem 8.7, p. 90]. Suppose that $R=\prod_{i=1}^{t} R_i$, where R_i is a finite local ring with maximal ideal M_i. Each R_i has cardinality p_i^t for some prime p and has associated with it a canonical projection,

$$h_i: R_i \rightarrow R_i/M_i = GF(p_i^t).$$

Setting $k_i=GF(p_i^t)$ we will say that the finite fields $\{k_i:i=1, 2, \cdots, t\}$ are the fields associated with R.

Observe that the decomposition of R carries over to the general linear group of degree n over R yielding $GL_n(R)\cong\prod_{i=1}^{t} GL_n(R_i)$. Furthermore, for each i, the projection h_i induces an epimorphism,

$$h_i: GL_n(R_i) \rightarrow GL_n(k_i).$$

If $GL_n(R_i)$ is taken as the group of n by n invertible matrices over R_i, then h_i is simply reduction modulo M_i. Note that the kernel of h_i, K_i, has cardinality a power of p_i and thus is a solvable group.

The following corollary to P. Hall's extension of the Sylow theorems [2, Theorem 9.3.1, p. 141] is the key result needed for Theorems 1 and 2.

Observation. Let G be a finite group with solvable normal subgroup K and let $G=G/K=\langle g | g \in G \rangle$. Let α and β be elements of G with $(|\alpha|, |K|)=1=(|\beta|, |K|)$. Then $\bar{\alpha} \sim \bar{\beta}$ implies $\alpha \sim \beta$.

Received by the editors April 12, 1972.

Key words and phrases. Similarity, finite local ring, finite solvable group.
Proof. Since $\bar{a} = \gamma^{-1}\bar{b}\gamma$ for some γ it follows that $\langle a \rangle_K = \langle \gamma^{-1}\beta\gamma \rangle_K$. By P. Hall's theorem it follows that $\langle a \rangle$ and $\langle \gamma^{-1}\beta\gamma \rangle$ are conjugate in $\langle a \rangle_K$. Thus there is a μ in K and $r > 0$ such that $\mu^{-1}\gamma^{-1}\beta\gamma\mu = \alpha^r$. Hence $\bar{a}^r = \gamma^{-1}\bar{b}\gamma = \bar{a}$ and, since a and \bar{a} have the same order, $\alpha = \alpha^r$. Therefore $\alpha = (\gamma\mu)^{-1}\beta(\gamma\mu)$ and $\alpha \sim \beta$.

The theorems.

Theorem 1. Let R be a finite local ring with maximal ideal M and $R/M = GF(p^n) = k$. Let α, β be elements of $GL_n(R)$ with $(|\alpha|, p) = 1$ and $(|\beta|, p) = 1$. Then α is similar to β if and only if α is similar to β modulo M.

Proof. This follows from the Observation by noting that the kernel, K, of $h:GL_n(R) \rightarrow GL_n(R/M)$ is solvable with cardinality a power of p.

Theorem 2. Let R be a finite commutative ring with identity and let the cardinality of R be m. Two elements α and β of $GL_n(R)$ satisfying $(|\alpha|, m) = (|\beta|, m) = 1$ are similar if and only if their canonical images over the Galois fields associated with R are similar.

Proof. This follows from Theorem 1 directly by means of the sequence of epimorphisms

$$GL_n(R) = \prod_{i=1}^t GL_n(R_i) \xrightarrow{\pi_i} GL_n(R_i) \xrightarrow{h_i} GL_n(k_i).$$

Bibliography

Department of Mathematics, Clemson University, Clemson, South Carolina 29631

Current address: Department of Mathematics, Bloomsburg State College, Bloomsburg, Pennsylvania 17815