Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal sublattices of finite distributive lattices


Author: Ivan Rival
Journal: Proc. Amer. Math. Soc. 37 (1973), 417-420
MSC: Primary 06A35; Secondary 06A40
DOI: https://doi.org/10.1090/S0002-9939-1973-0311527-9
MathSciNet review: 0311527
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A best possible estimate is established for the size and length of maximal proper sublattices of finite distributive lattices.


References [Enhancements On Off] (What's this?)

  • [1] C. C. Chen, K. M. Koh and S. K. Tan, Frattini sublattices of distributive lattices (preprint). MR 0349511 (50:2004)
  • [2] G. Grätzer, Lattice theory: First concepts and distributive lattices, Freeman, San Francisco, Calif., 1971. MR 0321817 (48:184)
  • [3] H. Sharp, Cardinality of finite topologies, J. Combinatorial Theory 5 (1968), 82-86. MR 37 #2167. MR 0226578 (37:2167)
  • [4] D. Steven, Topology on finite sets, Amer. Math. Monthly 75 (1968), 739-741. MR 0234408 (38:2725)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A35, 06A40

Retrieve articles in all journals with MSC: 06A35, 06A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0311527-9
Keywords: Distributive lattice, maximal proper sublattice
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society