Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Inner products characterized by difference equations

Author: Gordon G. Johnson
Journal: Proc. Amer. Math. Soc. 37 (1973), 535-536
MSC: Primary 46C05
MathSciNet review: 0312223
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A normed linear space X is an inner product space iff, for some integer $ k \geqq 3,\sum _{t = 0}^k(\mathop t\limits^k ){( - 1)^t}{\left\Vert {a + ab} \right\Vert^2} = 0$ for all a and b in X.

References [Enhancements On Off] (What's this?)

  • [M] M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Heft 21, Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46C05

Retrieve articles in all journals with MSC: 46C05

Additional Information

PII: S 0002-9939(1973)0312223-4
Article copyright: © Copyright 1973 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia