INNER PRODUCTS CHARACTERIZED
BY DIFFERENCE EQUATIONS

GORDON G. JOHNSON

ABSTRACT. A normed linear space X is an inner product space iff, for some integer $k \geq 3$, \(\sum_{t=0}^{k} \binom{k}{t} (-1)^t \|a + tb\|^2 = 0 \) for all a and b in X.

THEOREM. If X is a linear space with norm $\| \cdot \|$ and, for some integer $k \geq 3$,
\[
\sum_{t=0}^{k} \binom{k}{t} (-1)^t \|a + tb\|^2 = 0
\]
for all $a, b \in X$ then $\sum_{t=0}^{k} \binom{k}{t} (-1)^t \|a + tb\|^2 = 0$ for every integer $k \geq 3$ and $\| \cdot \|$ is induced by an inner product on X.

DEFINITION. Suppose X is a normed linear space and k and n are non-negative integers. Let
\[
D^n_k(a, b) = \sum_{t=0}^{k} \binom{k}{t} (-1)^t \|a + (t + n)b\|^2
\]
where a and b are in X and $\| \cdot \|$ denotes the norm on X.

PROOF. Suppose k is an integer greater than 2 and $D^n_k(a, b) = 0$ for all a and b. Then $D^n_k(a, b) = 0$ if n is a nonnegative integer; moreover, $D^n_k(a, b) = D^{n+1}_{k-1}(a, b) - D^n_{k-1}(a, b)$ and hence $D^n_{k-1}(a, b) = D^0_{k-1}(a, b)$.

Suppose m is a positive integer not exceeding k then by iteration we have that
\[
(1) \quad D^n_{k-m}(a, b) = \sum_{t=0}^{m-1} \binom{n}{t} D^0_{k-m+t}(a, b) \quad \text{for } n = 0, 1, 2, \cdots,
\]
and hence
\[
(2) \quad D^n_0(a, b) = \sum_{t=0}^{k-1} \binom{n}{t} D^0_t(a, b) \quad \text{for } n = 0, 1, 2, \cdots.
\]

Recall that $D^n_0(a, b) = \|a + nb\|^2$. Hence it follows that
\[
(3) \quad \|(1/n)a + b\|^2 = \sum_{t=0}^{k-1} \binom{n}{t} D^0_t(a, b)/n^2.
\]
We have then that
\[
\lim_{n \to \infty} \| (1/n)a + b \|^2 = \| b \|^2
\]
\[
= \lim_{n \to \infty} \frac{1}{n^2} \sum_{i=0}^{k-1} \left(\frac{n}{i} \right) D_i^0(a, b)
\]
\[
= \lim_{n \to \infty} \left[D_0^0(a, b)/n^2 + \left(\left(\frac{n}{1} \right)/n^2 \right) D_1^0(a, b) + \left(\left(\frac{n}{2} \right)/n^2 \right) D_2^0(a, b)
\right.
\]
\[
+ \left(\left(\frac{n}{3} \right)/n^2 \right) D_3^0(a, b) + \cdots + \left(\left(\frac{n}{k-1} \right)/n^2 \right) D_{k-1}^0(a, b) \Bigg].
\]

In order that this limit exist it is necessary that \(D_0^0(a, b) = 0 \) if \(3 \leq l \leq k - 1 \). Hence the limit is \(\frac{1}{2} D_0^0(a, b) \) if \(k \geq 3 \). Therefore
\[
\| b \|^2 = \frac{1}{2} \left[\| a + 2b \|^2 - 2\| a + ab \|^2 + \| a \|^2 \right]
\]
for all \(a \) and \(b \) in \(X \), which is a simple reformulation of the parallelogram law.

Hence the space is an inner product space from which it is easy to establish that \(D_k^0(a, b) = 0 \) if \(k \) is any integer greater than 2.

Reference

Department of Mathematics, University of Houston, Houston, Texas 77004