A CHARACTERIZATION OF LOCAL COMPACTNESS

R. V. FULLER

Abstract. In this paper we show that the cluster set of a filter in a Hausdorff space X is a continuous function of the filter if and only if X is locally compact.

Our result should be compared with that of Wyler [2] who has shown that a Hausdorff space is regular if and only if the limit of a convergent filter is a continuous function of the filter. Wyler uses a different topology on his space of filters.

For a filter \mathcal{F} in a topological space X the cluster set of \mathcal{F} is $\bigcap \{F^- : F \in \mathcal{F}\}$. We will denote the cluster set of \mathcal{F} by $\alpha(\mathcal{F})$.

For a set X and subset U of X, $P(X)$ is the set of all nonempty subsets of X and $R(U, X)$ is the family of all nonempty subsets of X which intersect U. If X is a topological space, the lower semifinite (lsf) topology on $P(X)$ has as a subbasis all sets of the form $R(U, X)$ where U is open in X.

We will denote all filters of a topological space X which have nonempty cluster sets by $X^\#$. The filter space $X^\#$ will be assumed to carry the topology which has as a subbasis all sets of the form

$$U^\# = \{\mathcal{F} \in X^\#: F \cap U \neq \emptyset \text{ for all } F \text{ in } \mathcal{F}\},$$

where U is open in X.

The reader is referred to Kelley [1] for definitions and results not given here.

We can now state the result which we propose to prove as follows.

Theorem. Let X be a Hausdorff space and $P(X)$ have the lsf topology. Then the cluster set function $\alpha: X^\# \to P(X)$ is continuous if and only if X is locally compact.

Proof. Assume X is locally compact. Let \mathcal{F}_0 be in $X^\#$ and $R(V, X)$, where V is open, be a subsbasic neighborhood of $\alpha(\mathcal{F}_0)$. Then for some p in $\alpha(\mathcal{F}_0)$, p is also in V. Hence there is a compact neighborhood U of p contained in V.
Consider the neighborhood of \(F_0, U^# \), and let \(F \) be in this neighborhood. Then for each \(F \) in \(F \), \(F \cap U \neq \emptyset \) so that a filter \(F_U \) is generated by the collection \(\{ F \cap U : F \in F \} \). Since \(U \) is compact, \(F_U \) must have a cluster point \(q \) in \(U \). But \(F \) is coarser than \(F_U \), so \(q \) is also a cluster point of \(F \). Thus \(\alpha(F) \cap U \neq \emptyset \) so \(\alpha(F) \in R(V, X) \). Therefore \(\alpha \) is continuous.

Assume \(X \) is not locally compact. There is then a point \(p \) in \(X \) such that no neighborhood of \(p \) is compact. Hence for every neighborhood \(U \) of \(p \), there is a filter \(F_U \) in \(U \) which has no cluster point.

Let \(F_0 \) be the filter of all supersets of \(\{ p \} \). If \(W^# \), where \(W \) is open, is a subbasic neighborhood of \(F_0 \), then in particular \(\{ p \} \cap W \neq \emptyset \) so \(W \) is a neighborhood of \(p \). Note since \(X \) is Hausdorff, \(\alpha(F_0) = \{ p \} \).

Now let \(R(V, X) \), where \(V \) is open, be a subbasic neighborhood of \(\alpha(F_0) \), so that \(V \) is a neighborhood of \(p \). Consider for each neighborhood \(U \) of \(p \), the filter \(G_U = \{ F \cap (X - V) : F \in F_U \} \) which has cluster set \(\alpha(G_U) = X - V \). If \(W^# \) is a subbasic neighborhood of \(F_0 \), \(G_U \in W^# \) for \(U \subseteq W \). Thus the net of filters \(G_U \) converges to \(F_0 \). But \(\alpha(G_U) \) does not belong to \(R(V, X) \) for any \(U \). Therefore \(\alpha : X^# \to P(X) \) is not continuous.

REFERENCES

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208