A CHARACTERIZATION OF LOCAL COMPACTNESS
R. V. FULLER

Abstract. In this paper we show that the cluster set of a filter in a Hausdorff space X is a continuous function of the filter if and only if X is locally compact.

Our result should be compared with that of Wyler [2] who has shown that a Hausdorff space is regular if and only if the limit of a convergent filter is a continuous function of the filter. Wyler uses a different topology on his space of filters.

For a filter \mathcal{F} in a topological space X the cluster set of \mathcal{F} is $\{F^c : F \in \mathcal{F}\}$. We will denote the cluster set of \mathcal{F} by $\alpha(\mathcal{F})$.

For a set X and subset U of X, $P(X)$ is the set of all nonempty subsets of X and $R(U, X)$ is the family of all nonempty subsets of X which intersect U. If X is a topological space, the lower semifinite (lsf) topology on $P(X)$ has as a subbasis all sets of the form $R(U, X)$ where U is open in X.

We will denote all filters of a topological space X which have nonempty cluster sets by X#. The filter space $X^#$ will be assumed to carry the topology which has as a subbasis all sets of the form

$$U^# = \{\mathcal{F} \in X^# : F \cap U \neq \emptyset \text{ for all } F \in \mathcal{F}\},$$

where U is open in X.

The reader is referred to Kelley [1] for definitions and results not given here.

We can now state the result which we propose to prove as follows.

Theorem. Let X be a Hausdorff space and $P(X)$ have the lsf topology. Then the cluster set function $\alpha : X^# \to P(X)$ is continuous if and only if X is locally compact.

Proof. Assume X is locally compact. Let \mathcal{F}_0 be in $X^#$ and $R(V, X)$, where V is open, be a subbasic neighborhood of $\alpha(\mathcal{F}_0)$. Then for some p in $\alpha(\mathcal{F}_0)$, p is also in V. Hence there is a compact neighborhood U of p contained in V.

Received by the editors January 31, 1972.

AMS (MOS) subject classifications (1970). Primary 54D45, 54A99; Secondary 54B20, 54C60.

Key words and phrases. Local compactness, space of filters, cluster set of a filter, lower semifinite topology.

© American Mathematical Society 1973

615
Consider the neighborhood of $\mathcal{F}_0, U^\#$, and let \mathcal{F} be in this neighborhood. Then for each F in $\mathcal{F}, F \cap U \neq \emptyset$ so that a filter \mathcal{F}_U is generated by the collection $\{F \cap U : F \in \mathcal{F}\}$. Since U is compact, \mathcal{F}_U must have a cluster point q in U. But \mathcal{F} is coarser than \mathcal{F}_U, so q is also a cluster point of \mathcal{F}. Thus $\alpha(\mathcal{F}) \cap U \neq \emptyset$ so $\alpha(\mathcal{F}) \in R(V, X)$. Therefore α is continuous.

Assume X is not locally compact. There is then a point p in X such that no neighborhood of p is compact. Hence for every neighborhood U of p, there is a filter \mathcal{F}_U in U which has no cluster point.

Let \mathcal{F}_0 be the filter of all supersets of $\{p\}$. If $W^\#$, where W is open, is a subbasic neighborhood of \mathcal{F}_0, then in particular $\{p\} \cap W \neq \emptyset$ so W is a neighborhood of p. Note since X is Hausdorff, $\alpha(\mathcal{F}_0) = \{p\}$.

Now let $R(V, X)$, where V is open, be a subbasic neighborhood of $\alpha(\mathcal{F}_0)$, so that V is a neighborhood of p. Consider for each neighborhood U of p, the filter $\mathcal{G}_U = \{F \cap (X - V) : F \in \mathcal{F}_U\}$ which has cluster set $\alpha(\mathcal{G}_U) = X - V$. If $W^\#$ is a subbasic neighborhood of \mathcal{F}_0, $\mathcal{G}_U \in W^\#$ for $U \subseteq W$. Thus the net of filters \mathcal{G}_U converges to \mathcal{F}_0. But $\alpha(\mathcal{G}_U)$ does not belong to $R(V, X)$ for any U. Therefore $\alpha : X^\# \rightarrow P(X)$ is not continuous.

REFERENCES