WEYL'S LEMMA FOR POINTWISE SOLUTIONS
OF ELLIPTIC EQUATIONS

J. R. DIEDERICH

Abstract. We prove that pointwise, L_1 solutions of second order elliptic partial differential equations are classical solutions.

0. Introduction. A consequence of Weyl's lemma for second order elliptic partial differential equations is that every L_1 (Lebesgue class) weak solution is a classical solution, i.e., if, for

$$L = \sum_{i,j=1}^{K} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{K} b_i(x) \frac{\partial}{\partial x_i} + c(x)$$

and

$$L^* = \sum_{i,j=1}^{K} \partial^2 \frac{\partial}{\partial x_i \partial x_j} a_{ij}(x) - \sum_{i=1}^{K} \partial \frac{\partial}{\partial x_i} b_i(x) + c(x),$$

we have $\int_{\Omega} uL^* \phi = \int_{\Omega} f \phi$ for all ϕ in $C_0^\infty(\Omega)$, then $Lu = f$ in Ω.

The differentiability of the coefficients of L, required for the definition of L^*, is not intrinsic in view of the maximum principle and the Dirichlet problem (in the case $c(x) \geq 0$). Our aim is to employ a notion of generalized solution of $Lu = f$ which bypasses the adjoint operator and thereby establish an analogue of Weyl's lemma when the coefficients are in a Hölder-α class. Definitions and the statement of the theorem follow in the next section.

1. Preliminaries. We shall work in K-dimensional Euclidean space, \mathbb{R}^K, $3 \leq K$, and shall use the following notation: $x = (x_1, \ldots, x_K)$ and $B(x, r) =$ the open K-ball centered at x with radius r. Ω will denote an open set in \mathbb{R}^K; $|E|$, the Lebesgue measure of E; ∂E, the boundary of E; subscripted e, constants which depend only on the operator (1) and K; and ω_K, the surface area of $\partial B(0, 1)$.

A function u, which is in L_1 in a neighborhood of x, is said to be in
For $\beta=2$, $P(y)=\gamma_0+\sum_{i=1}^{K} \gamma_i y_i+2^{-1} \sum_{i,j=1}^{K} \gamma_{ij} y_i y_j$, where $\gamma_{ij}=\gamma_{ji}$; we define the generalized partial derivatives $D_i u(x)$, $D_{ij} u(x)$ to be γ_i, γ_{ij} respectively. Also we can redefine u at x, if necessary, so that $u(x)=\gamma_0$.

(The class t_β was defined in [1] and has since appeared in [2] and [6].)

For u in $t_2(x)$, we say that u is a t_2 solution of $Lu=f$ at x if

$$r^{-K} \int_{B(x, r)} |u(x+y) - P(y)| \, dy = o(r^\beta) \quad \text{as } r \to 0.$$

We say that u is a t_2 solution of $Lu=f$ in Ω if u is a t_2 solution at each point in Ω. u is said to be a classical solution if $u \in C^2(\Omega)$. (It should be noted that no restrictions have been placed on the operator L up to this point.)

We shall assume the operator (1) to be elliptic and have α-Hölder continuous coefficients, $0<\alpha\leq 1$; with this, (1) is uniformly elliptic on compact subsets of Ω.

Theorem. If u is an L_1, t_2 solution of $Lu=f$ in Ω, then u is a classical solution.

Remarks. No assumption has been made on the integrability of the generalized derivatives $D_i u(x)$, $D_{ij} u(x)$ when considered as functions on Ω. In fact, see [2], there are simple examples of functions in $t_2(x)$, x in $(-1, 1)$ such that $D_i u(x)$, $D_{ij} u(x)$ are not in L_1 on compact subsets of $(-1, 1)$; note that the $o(r^\beta)$ in (2) is not assumed to be uniform in x.

The special case of u in L_∞, $f=0$, and $c(x)\leq 0$, has been established in [2]. The case for general f, α-Hölder continuous, is immediate. The restriction on $c(x)$ is not essential and while a nontrivial argument is necessary for unrestricted $c(x)$, the techniques are essentially those of [2, §§1-4], and those of this paper. We therefore maintain $c(x)\leq 0$.

As in [2], we only need assume that u is a t_2 solution of $Lu=f$ almost everywhere and in t_2 everywhere in Ω. We shall omit this extension.

It is not clear that the Hölder-α condition is best possible. However, our result is best possible with respect to the notion of t_2 solution in that the conclusion fails if the absolute values in (2) are not required, i.e., $u(x)\equiv x_1|x|^{-K}$ satisfies, with $P(y)\equiv 0$ for $x=0$,

$$r^{-K} \int_{B(x, r)} |u(x+y) - P(y)| \, dy = o(r^\beta) \quad \text{as } r \to 0$$

for all x; that is, $x_1|x|^{-K}$ has generalized Laplacian equal to zero everywhere and is clearly not harmonic at 0.

A forthcoming paper in the Ann. Scuola Norm. Sup. Pisa by Hager and Ross deals with elliptic equations in divergence form with α-Hölder coefficients; the notion of weak solution is considered vis-à-vis the notion of pointwise solution employed in this paper.

This work is an extension of some of the concepts developed by V. L. Shapiro in [6].

We also wish to thank the referee for his many helpful suggestions.

2. Fundamental lemmas. The first three lemmas were established in [2]. By a portion P of a set Z, we shall mean a nonempty intersection of Z with an open ball.

Lemma 1 [2, Lemma 2]. If u is in $t_2(x)$ for all x in Z and if Z is closed and nonempty, then there is a portion P of Z such that u is continuous in P in the relative topology, i.e., if $x_1 \in P$, then given $\varepsilon > 0$, there is a $\delta > 0$ such that for $x_2 \in P$ and $|x_1 - x_2| < \delta$, $|u(x_1) - u(x_2)| < \varepsilon$.

Lemma 2 (see [2, proof of Theorem 1]). If u is in $t_2(x)$ for all x in Z, closed and nonempty, then there is a portion P of Z and positive constants M and r_0 such that for all x in P and $0 < r < r_0$,

$$|B(0, r)|^{-1} \int_{B(0, r)} |u(x + y) - u(x)| \, dy \leq M. \quad (4)$$

Lemma 3 [2, Theorem 1]. If u is an L_∞, t_2 solution of $Lu = 0$ ($c(x) \leq 0$) in Ω, then u is a classical solution.

Lemma 4 (J. Serrin, [3, p. 300]). There exist functions $K_+(x, y)$ and $K_-(x, y)$ for $|x| \leq r$, $|y| = r$, $x \neq y$, and $r \leq 1$ having the following properties:

(i) Considered as functions of x for fixed y,

$$LK_+ \geq 0 \quad \text{and} \quad LK_- \leq 0. \quad (5)$$

(ii) For any point y_0, $|y_0| = r$, and any continuous function $g(y)$,

$$\lim_{z \to y_0} \int_{t \in B(0, r)} K_\pm(x, y) g(y) \, dS_y(y) = g(y_0)$$

where $dS_y(y)$ is the natural surface area element.

(iii) There are positive constants e_1 and e_2 such that, for $|x| \leq r/3$,

$$K_+(x, y) \geq e_1 r^{1-K} \quad \text{and} \quad K_-(x, y) \leq e_2 r^{1-K}. \quad (7)$$

Lemma 5. If $Lu = 0$ in $B(x_0, r)$, then

$$|u(x_0)| \leq e_3 |B(x_0, r)|^{-1} \int_{B(x_0, r)} |u(x)| \, dx. \quad (8)$$
Proof. As in [4], \(u(x) = \int_{\partial B(x_0, \rho)} u(y) \, d\omega(x, y) \) where \(d\omega(x, y) \) is a nonnegative Borel measure on \(\partial B(x_0, \rho) \), with \(\rho < r \). Thus
\[
|u(x)| \leq \int_{\partial B(x_0, \rho)} |u(y)| \, d\omega(x, y).
\]
Form
\[
u_i(x) = \int_{\partial B(x_0, \rho)} K_i(x, y) |u(y)| \, dS_{\rho}(y).
\]
By (5), (6), and the maximum principle,
\[
\int_{\partial B(x_0, \rho)} |u(y)| \, d\omega(x, y) \leq u_-(x) \quad \text{for } x \in B(x_0, \rho),
\]
and by (7),
\[
u_-(x) \leq \varepsilon_2 \rho^{1-K} \int_{\partial B(x_0, \rho)} |u(y)| \, dS_{\rho}(y) \quad \text{for } |x - x_0| \leq \rho/3.
\]
Hence
\[
|u(x_0)| \leq \varepsilon_2 \rho^{1-K} \int_{\partial B(x_0, r)} |u(y)| \, dS_{\rho}(y).
\]
Thus by integrating
\[
\frac{r^{1-K}}{K} |u(x_0)| \leq \varepsilon_2 \int_{B(x_0, r)} |u(y)| \, dy
\]
which yields (8).

Proof of the Theorem (\(c(x) \leq 0 \)). Let \(Z \) be the set of discontinuities of \(u \); \(\overline{Z} \) is its closure. If \(Z \) is empty, then by Lemma 3, \(u \) is a classical solution. Assuming, therefore, that \(\overline{Z} \neq \emptyset \), we have, by Lemmas 1 and 2, a portion \(P \) of \(Z \) in which \(u \) is continuous in the relative topology and satisfies (4) for \(x \) in \(P \). Let \(x_0 \in P \). If we can show that there is a \(\delta > 0 \) such that \(u \) is bounded in \(|x - x_0| < \delta \), then \(u \) is a classical solution in \(|x - x_0| < \delta \).

Consequently, \(x_0 \) is not in \(Z \); therefore \(x_0 \) is not in \(P \), which is a contradiction based on the assumption that \(\overline{Z} \neq \emptyset \).

We can choose \(\delta = \min(r_0/2, r_1/2) \), where \(r_0 \) is given in Lemma 2 and where \(r_1 \) is selected so that

(i) \(0 < r_1 \),

(ii) \(\{|x_0 - x| < r_1, x \in Z, |u(x) - u(x_0)| \leq 1\} \subseteq P \).

For \(|x - x_0| < \delta \), \(x \) in \(Z \),
\[
|u(x)| \leq |u(x) - u(x_0)| + |u(x_0)| \leq |u(x_0)| + 1.
\]

For \(|x - x_0| < \delta \), \(x \) not in \(Z \), there is a point \(x^* \) in \(P \) and \(0 < \rho < \delta \) such that \(x^* \in \partial B(x, \rho) \) while \(P \cap B(x, \rho) = \emptyset \). Thus \(Lu = 0 \) in \(B(x, \rho) \). Hence,
by (8),

$$|u(x)| \leq e_3 |B(x, \rho)|^{-1} \int_{B(x, \rho)} |u(y)| \, dy$$

$$\leq e_3 2^{2K} |B(x^*, 2\rho)|^{-1} \int_{B(x^*, 2\rho)} |u(y)| \, dy.$$

Since $\rho < \delta < r_0/2$, $2\rho < r_0$, and $x^* \in P$,

$$\leq e_3 2^{2K} [u(x^*)] + M.$$

Since $|x_0 - x^*| \leq |x_0 - x| + |x - x^*| \leq \delta + \rho < r_1$, $|u(x^*)| \leq |u(x_0)| + 1$, which gives $|u(x)| \leq e_3 2^{2K} [u(x_0)| + M + 1]$, completing the proof.

Bibliography

Department of Mathematics, University of California, Davis, California 95616