Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ 3$-manifolds that are sums of solid tori and Seifert fiber spaces


Author: Wolfgang Heil
Journal: Proc. Amer. Math. Soc. 37 (1973), 609-614
MSC: Primary 57A10
DOI: https://doi.org/10.1090/S0002-9939-1973-0356055-X
MathSciNet review: 0356055
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a simply connected 3-manifold is $ {S^3}$ if it is a sum of a Seifert fiber space and solid tori. Let F be an orientable Seifert fiber space with a disk as orbit surface. It is shown that a sum of F and a solid torus is a Seifert fiber space or a connected sum of lens spaces.

Let M be a closed 3-manifold which is a union of three solid tori. It is shown that M is a Seifert fiber space or the connected sum of two lens spaces (including $ {S^1} \times {S^2}$).


References [Enhancements On Off] (What's this?)

  • [1] G. Burde and K. Murasugi, Links and Seifert fiber spaces, Duke Math. J. 37 (1970), 89-93. MR 40 #6528. MR 0253313 (40:6528)
  • [2] G. Burde and H. Zieschang, Eine Kennzeichnung der Torusknoten, Math. Ann. 167 (1966), 169-176. MR 35 #1008. MR 0210113 (35:1008)
  • [3] A. C. Connor, Partially splittable knots (to appear).
  • [4] J. Hempel, A simply connected 1-manifold is $ {S^3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158. MR 28 #599. MR 0157365 (28:599)
  • [5] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238. MR 1555366
  • [6] P. Orlik, E. Vogt and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. MR 35 #3696. MR 0212831 (35:3696)
  • [7] F. Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 #5223. MR 0236930 (38:5223)
  • [8] H. Zieschang, Über einfache Kurvensysteme auf einer Vollbrezel vom Geschlecht 2, Abh. Math. Sem. Univ. Hamburg. 26 (1964), 237-247. MR 28 #4524. MR 0161316 (28:4524)
  • [9] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745. MR 0383406 (52:4287)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57A10

Retrieve articles in all journals with MSC: 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0356055-X
Keywords: Seifert fiber spaces, Dehn construction, simply connected 3-manifold
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society