Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global dimension of triangular orders over a discrete valuation ring


Author: Vasanti A. Jategaonkar
Journal: Proc. Amer. Math. Soc. 38 (1973), 8-14
DOI: https://doi.org/10.1090/S0002-9939-1973-0309988-4
MathSciNet review: 0309988
Full-text PDF

Abstract | References | Additional Information

Abstract: We characterize triangular $ R$-orders of finite global dimension in $ n \times n$ matrix rings over the quotient field of DVR $ R$ and obtain a precise upper bound for their global dimension, viz. $ n - 1$. We also characterize triangular $ R$-orders of highest global dimension.


References [Enhancements On Off] (What's this?)

  • [1] Vasanti A. Jategaonkar, Global dimension of triangular orders over DVR, Notices Amer. Math. Soc. 18 (1971), 626. Abstract #71T-A107.
  • [2] Bruno J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464-467. MR 41 #6909. MR 0262299 (41:6909)
  • [3] Joseph J. Rotman, Notes on homological algebra, Van Nostrand Reinhold, New York, 1968. MR 0409590 (53:13342)
  • [4] L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44-76. MR 36 #205. MR 0217114 (36:205)
  • [5] R. B. Tarsey, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340. MR 0268226 (42:3125)
  • [6] -, Global dimension of triangular orders, Proc. Amer. Math. Soc. 28 (1971), 423-426. MR 0274527 (43:290)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0309988-4
Keywords: Global dimension, order, tiled order, triangular tiled order, discrete valuation ring, Dedekind domains
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society