Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free inverse semigroups


Author: H. E. Scheiblich
Journal: Proc. Amer. Math. Soc. 38 (1973), 1-7
DOI: https://doi.org/10.1090/S0002-9939-1973-0310093-1
MathSciNet review: 0310093
Full-text PDF

Abstract | References | Additional Information

Abstract: At least three authors have offered proofs of the existence of a free inverse semigroup, but without describing its structure. This paper shows that if $ X$ is a nonempty set, $ G$ is the group on $ X$, and $ E$ is a certain subsemilattice of the power set of $ G$, then a certain collection of principal ideal isomorphisms of $ E$ is a free inverse semigroup on $ X$.


References [Enhancements On Off] (What's this?)

  • [1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. 1, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R.I., 1961. MR 24 #A2627. MR 0132791 (24:A2627)
  • [2] Carl Eberhart and John Selden, One-parameter inverse semigroups, Trans. Amer. Math. Soc. 168 (1972), 53-66. MR 0296197 (45:5258)
  • [3] D. B. McAlister, A homomorphism theorem for semigroups, J. London Math. Soc. 43 (1968), 355-366. MR 37 #329. MR 0224730 (37:329)
  • [4] A. G. Kuroš, Theory of groups. Vol. 1, GITTL, Moscow, 1953; English transl., Chelsea, New York, 1955. MR 15, 501; MR 17, 124. MR 0109842 (22:727)
  • [5] V. V. Vagner, Generalized heaps and generalized groups with the transitive relation of compatibility, Učen. Zap. Saratov. Gos. Univ. Ser. Meh-Mat. 70 (1961), 25-39. (Russian)


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0310093-1
Keywords: Free inverse semigroup
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society