DEMICONTINUITY AND HEMICONTINUITY IN FRÉCHET SPACE
HUGO D. JUNGHENN

Abstract. It is proved that the notions of demicontinuity and hemicontinuity for monotone maps from a Fréchet space into its dual are equivalent, thus generalizing a result of T. Kato.

Let X be a (real or complex) locally convex Hausdorff linear topological space, X^* its dual, and (\cdot, \cdot) the natural pairing between X and X^*. In what follows we consider (possibly) nonlinear operators G with domain $D(G)$ contained in X and range contained in X^*.

Definitions. G is said to be
(a) monotone if $\text{Re}(x-y, Gx-Gy) \geq 0$; $x, y \in D(G)$;
(b) demicontinuous at $u \in D(G)$ if $u_n \in D(G)$, $n=1, 2, \cdots$, and $u_n \rightharpoonup u$ imply $G_{u_n} \rightharpoonup G u$ (\rightharpoonup and \rightharpoonup denote strong convergence in X and weak* convergence in X^* respectively);
(c) hemicontinuous at $u \in D(G)$ if $v \in X$, $t_n \geq 0$, $n=1, 2, \cdots$, $t_n \to 0$ and $u+t_nv \in D(G)$ imply $G(u+t_nv) \to G(u)$.

The following theorem generalizes a result of T. Kato (see [1]).

Theorem. If X is a Fréchet space, G is monotone, and $D(G)$ is open in X, then G is demicontinuous at $u \in D(G)$ if and only if G is hemicontinuous at u.

Proof. The necessity is clear. Assume G is hemicontinuous at $u \in D(G)$, and let $u_n \in D(G)$, $n=1, 2, \cdots$, $u_n \rightharpoonup u$. We shall show first that \{G_{u_n}\} is a strongly bounded subset of X^*.

Suppose that this is not the case. Then by the principle of uniform boundedness (see [2]) there exists some $x \in X$ and a subsequence of $\{u_n\}$, which we shall denote by $\{u_{n_k}\}$, such that

$$r_n = |(x, G_{u_n})| \to \infty.$$

We construct a sequence of integers k_n as follows:

$$k_n = \lfloor \min \{n^{-1/4}, r_n \} \rfloor \quad \text{if } u_n \neq u,$$
$$= [r_n] \quad \text{if } u_n = u,$$

Received by the editors June 22, 1972.
AMS (MOS) subject classifications (1970). Primary 47H05; Secondary 46A05.
Key words and phrases. Fréchet space, demicontinuity, hemicontinuity, monotonic.
© American Mathematical Society 1973

89
where \([\cdot]\) denotes the greatest integer function and \(\|\cdot\|\) denotes the quasinorm of \(X\). Clearly \(k_n \to \infty\) and \(\|k_n^2(u_n - u)\| \leq k_n^2\|u_n - u\| \leq \|u_n - u\|^{1/2}\) for all \(n\). Setting \(t_n = k_n^{-1}\) we thus have

\[
(1) \quad t_n \to 0 \quad \text{and} \quad t_n^{-2}(u_n - u) \to 0.
\]

Let \(v \in X\) and set \(w_n = u + t_nv\). Since \(D(G)\) is open, \(w_n \in D(G)\) for all \(n\) greater than some \(n_0\). The monotonicity of \(G\) implies that

\[
(2) \quad \Re(v, Gu_n) \leq t_n^{-1}\Re(w_n - u_n, Gw_n) + t_n^{-1}\Re(u_n - u, Gu_n).
\]

By the hemicontinuity of \(G\), \(\{Gw_n : n > n_0\}\) is pointwise bounded and therefore, by the uniform boundedness theorem, equicontinuous. Since \(t_n^{-1}(w_n - u_n) \to v\) it follows that \(\{t_n^{-1}\Re(w_n - u_n, Gw_n) : n > n_0\}\) is bounded.

Next, we obtain an upper bound for the second term on the right side of (2). Let \(p\) denote the continuous seminorm on \(X^*\) defined by the bounded subset of \(X\) consisting of the point \(x\) and the sequence \(\{t_n^2(u_n - u)\}\). Setting \(s_n = p(Gu_n)\) we have, for all \(n\),

\[
t_n^{-1}\Re(u_n - u, Gu_n) \leq s_nt_n.
\]

Therefore,

\[
\Re(v, Gu_n) \leq C + s_nt_n, \quad n > n_0,
\]

where \(C\) is a constant depending on \(v\) but not on \(n\). Dividing by \(s_nt_n\) and noting that \(s_nt_n \geq rnt_n \geq 1\) we obtain

\[
\Re(v, (s_nt_n)^{-1}Gu_n) \leq C + 1, \quad n > n_0.
\]

Replacing \(v\) by \(-v\) (and by \(\pm iv\) if \(X\) is complex) we see that \(\{(v, (s_nt_n)^{-1}Gu_n)\}\) is bounded for all \(v \in X\). By the uniform boundedness theorem again, \(\{(s_nt_n)^{-1}Gu_n\}\) is bounded in \(X^*\). But this is clearly impossible since \(p((s_nt_n)^{-1}Gu_n) = t_n^{-1} \to \infty\). Thus \(\{Gu_n\}\) is bounded.

We now show that \(Gu_n \to Gu\). Define a sequence of integers \(j_n\) by

\[
j_n = \begin{cases} \|u_n - u\|^{1/4} & \text{if } u_n \neq u, \\ n & \text{if } u_n = u. \end{cases}
\]

If \(v \in X\) and we set \(t_n = j_n^{-1}\), \(w_n = u + t_nv\), then (1) and (2) hold as before.

Let \(q\) be the continuous seminorm on \(X^*\) defined by the bounded set \(\{t_n^2(u_n - u)\}\) and let \(q_n = q(Gu_n)\). Then \(\{q_n\}\) is bounded and

\[
(3) \quad t_n^{-1}\Re(u_n - u, Gu_n) \leq q_nt_n \to 0.
\]

The hemicontinuity of \(G\) implies that \(\{Gw_n\}\) is equicontinuous, hence

\[
(4) \quad t_n^{-1}\Re(w_n - u_n, Gw_n) \to \Re(v, Gu).
\]
Thus from (2), (3), and (4) we obtain
\[
\limsup_{n \to \infty} \Re(v, G_{u_n} - Gu) \leq 0.
\]
Since \(v\) was arbitrary,
\[
\limsup_{n \to \infty} |(v, G_{u_n} - Gu)| = 0 \quad \text{for all } v \in X,
\]
hence \(G_{u_n} \to Gu\).

REFERENCES