Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sets of points of discontinuity

Author: Richard Bolstein
Journal: Proc. Amer. Math. Soc. 38 (1973), 193-197
MSC: Primary 54C30; Secondary 26A15
MathSciNet review: 0312457
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In order that a subset $ F$ of a topological space coincide with the set of points of discontinuity of a real-valued function on the space, it is necessary that $ F$ be an $ {F_\sigma }$-set devoid of isolated points. It is shown that this condition is also sufficient if the space is ``almost-resolvable", and in particular if the space is either separable, first countable, locally compact Hausdorff, or topological linear.

References [Enhancements On Off] (What's this?)

  • [1] H. Hahn, Reelle Funktionen, Akademie Verlagsgesellschaft, Leipzig, 1932; reprint, Chelsea, New York, 1948.
  • [2] Edwin Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309–333. MR 0008692
  • [3] Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
  • [4] W. H. Young, Über die Einteilung der unstetigen Funtionen und die Verteilung ihrer Stetigkeitspunkte, S.-B. Akad. Wiss. Wien Math.-Natur. K. Abt. IIA 112 (1907), 1307-1311.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C30, 26A15

Retrieve articles in all journals with MSC: 54C30, 26A15

Additional Information

Keywords: $ D{F_\sigma }$-space, resolvable, almost-resolvable, SI-space
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society