Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Realcompactifications of products of ordered spaces


Author: William G. McArthur
Journal: Proc. Amer. Math. Soc. 38 (1973), 186-192
MSC: Primary 54D60; Secondary 54F05
DOI: https://doi.org/10.1090/S0002-9939-1973-0312470-1
MathSciNet review: 0312470
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The equality $ \upsilon (X \times Y) = \upsilon X \times \upsilon Y$ is studied for the case when one of the factors is a linearly ordered topological space (LOTS). Among the results obtained are the following:

1. If $ X$ is any separable realcompact space and $ Y$ is any LOTS of nonmeasurable cardinal, then $ \upsilon (X \times Y) = \upsilon X \times \upsilon Y$.

2. If $ X$ is a nonparacompact LOTS, then there is a paracompact LOTS $ Y$ such that $ \upsilon (X \times Y) \ne \upsilon X \times \upsilon Y$.

3. For any pair $ X,Y$ of well-ordered spaces, $ \upsilon (X \times Y) = \upsilon X \times \upsilon Y$.


References [Enhancements On Off] (What's this?)

  • [1] W. W. Comfort, Locally compact realcompactifications, General Topology and Its Relations to Modern Analysis and Algebra (Proc. Second Prague Topological Sympos., 1966), II, Academic Press, New York, 1967, pp. 95-100.
  • [2] -, On the Hewitt realcompactification of a product space, Trans. Amer. Math. Soc. 131 (1968), 107-118. MR 36 #5896. MR 0222846 (36:5896)
  • [3] W. W. Comfort and S. Negrepontis, Extending continuous functions on $ X \times Y$ to subsets of $ \beta X \times \beta Y$, Fund. Math. 59 (1966), 1-12. MR 34 #782. MR 0200896 (34:782)
  • [4] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824. MR 0193606 (33:1824)
  • [5] Z. Frolik, The topological product of two pseudo-compact spaces, Czechoslovak Math. J. 10 (95) (1960), 339-349. MR 22 #7099. MR 0116304 (22:7099)
  • [6] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362. MR 16, 156. MR 0063646 (16:156g)
  • [7] L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994. MR 0116199 (22:6994)
  • [8] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382. MR 21 #4405. MR 0105667 (21:4405)
  • [9] A. W. Hager, On the tensor product of function rings, Doctoral Dissertation, Pennsylvania State Univ., University Park, Pa., 1965.
  • [10] -, Projections of zero-sets (and the fine uniformity on a product), Trans. Amer. Math. Soc. 140 (1969), 87-94. MR 39 #3448. MR 0242114 (39:3448)
  • [11] E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45-99. MR 10, 126. MR 0026239 (10:126e)
  • [12] J. R. Isbell, Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964. MR 30 #561. MR 0170323 (30:561)
  • [13] M. Husek, The Hewitt realcompactification of a product, Comment. Math. Univ. Carolinae 11 (1970), 393-395. MR 42 #2438. MR 0267536 (42:2438)
  • [14] -, Pseudo-$ m$-compactness and $ \upsilon (P \times Q)$ (to appear).
  • [15] -, Realcompactness of function spaces and $ \upsilon (P \times Q)$ (to appear).
  • [16] W. McArthur, Hewitt realcompactifications of products, Canad. J. Math. 22 (1970), 645-656. MR 42 #1069. MR 0266161 (42:1069)
  • [17] -, A note on homeomorphic realcompactifications, Arch. Math. 22 (1971), 85-87. MR 0293590 (45:2667)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D60, 54F05

Retrieve articles in all journals with MSC: 54D60, 54F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0312470-1
Keywords: Hewitt realcompactification, ordered space, product space, realcompact space
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society