Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quasi-unmixed local rings and quasi-subspaces


Author: Peter G. Sawtelle
Journal: Proc. Amer. Math. Soc. 38 (1973), 59-64
MSC: Primary 13H10
DOI: https://doi.org/10.1090/S0002-9939-1973-0327755-2
MathSciNet review: 0327755
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The concept of a quasi-subspace is defined so that it plays a role relative to quasi-unmixedness analogous to that of subspace to unmixedness. This definition is used to characterize quasi-unmixed local rings.


References [Enhancements On Off] (What's this?)

  • [1] D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local Noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295-311. MR 42 #7660. MR 0272779 (42:7660)
  • [2] M. Nagata, On the chain problem of prime ideals, Nagoya Math. J. 10 (1965), 51-64. MR 18, 8. MR 0078974 (18:8e)
  • [3] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [4] L. J. Ratliff, Jr., On quasi-unmixed semi-local rings and the altitude formula, Amer. J. Math. 87 (1965), 278-284. MR 31 #3448. MR 0179199 (31:3448)
  • [5] -, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. I, Amer. J. Math. 91 (1969), 508-528. MR 40 #136. MR 0246867 (40:136)
  • [6] -, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. II, Amer. J. Math. 92 (1970), 99-144. MR 42 #249. MR 0265339 (42:249)
  • [7] D. Rees, $ A$-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8-17. MR 22 #9521. MR 0118750 (22:9521)
  • [8] P. Sawtelle, Characterizations of unmixed and quasi-unmixed local domains, Ph.D. Dissertation, University of California at Riverside, Riverside, California, 1971.
  • [9] O. Zariski and P. Samuel, Commutative algebra. Vol. I, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1958. MR 19, 833. MR 0090581 (19:833e)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H10

Retrieve articles in all journals with MSC: 13H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1973-0327755-2
Keywords: Local ring, unmixed, quasi-unmixed, subspace of a semilocal ring, Rees ring
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society